Radial-Velocity Search for Exoplanets around Metal-Rich Stars

Hiroki HARAKAWA NAOJ

Giant Planet formation: Core-Accretion scenario

- · pass through many physical processes in a protoplanetary disk
 - · solid-core grows beyond snow-line (~3AU@Solar system)
 - → gas accretion
 - inward orbital migration (e.g. Lin & Papaloizou, 85)
 - until disk-gas dissipates (~10Myr) (Haisch+01)
 - ⇒ disk-lifetime should control the inward migration
 - · Orbital evolution
 - · Planet-planet scattering (e.g. Nagasawa+ 08)
 - Hot-Jupiter and distant planet (>10AU)
- · Planet distribution should have a trend with environment of birthplaces (e.g. stellar metallicity, mass)

Planet occurrence vs. [Fe/H] and stellar mass

Fischer and Valenti, 2005

Johnson+, 2010

Planet dist. still uncovered...

infrared excess rate (%) in open clusters

Why should we consider Metallicity?

Yasui et al. 2010

Elcolano & Clarke 2010

Age of cluster (Myr)

 circumstellar disks in low-metallicity cluster may dissipate in a short time

metallicity should be correlated with disk-lifetime ⇒ also be with orbital migration

Radial-Velocity search

- ·HJ search around 635 metal-rich FGK dwarfs
- · ~ 10 year-long RV observations

Strategy

- Promising candidates
 - ⇒ High cad. obs. @OAO/HIDES
- ·Uniform sampling
 - ⇒ High efficiency obs. @Subaru/HDS

Single and Massive Giant System

Harakawa+ 2010

Multi-Jovian planet system

K1 IV, $M_*=1.3M_{\odot}$, [Fe/H]=+0.25

b: 550 d, 1M_J

c: 2100 d (3.5 AU), 3M_J

F7V, $M_*=1.4M_{\odot}$, [Fe/H]=+0.25

b: 352 d, 3M_J

c: 2374 d (3.9 AU), 3M_J

Multi-Jovian planet system

b: e = 0.17

c: $e = 0.76(+0.17_{-0.24})$

Multi-Jovian planet system

Added 7 OAO data

b: $e = 0.15 \pm 0.02$

How such strange systems are formed?

HD67087

- The most Still eccentric planet in multiple systems w/o HJs
- No RV trend

HD1605

- Multi-circular orbit system
 - Jup-Sat system analog?
 - only four systems
 have been reported to date
- Linear RV trend

 (i.e. additional companion)

Kozai mechanism

· orbital evolution of ecc. and incl. due to perturbation of the outer companion

FIGURE REMOVED

Completeness

REMOVED

Summary and Future prospects

- · Metallicity vs. planet dist. is a key issue to unveil planet formation in various environments
- Discovered 5 new planets around 3 stars using OAO and Subaru (Harakawa+ 2015)
 - · two "strange" multiple systems and the massive host with a massive planet

Next...

- · More Careful Spectroscopic characterization and distinguish with the stellar-mass influence (i.e. update our preliminary analysis)
 - · use archival spectral data in other sites?
- · should be continue observations to detect Jupiter-analogs in order to compare with Jupiter-analogs' occurrence.

