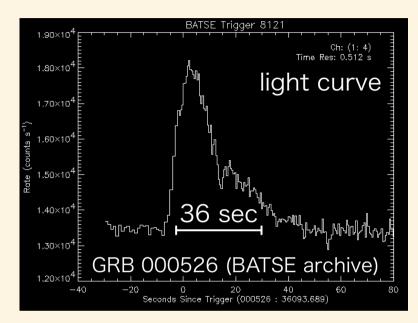
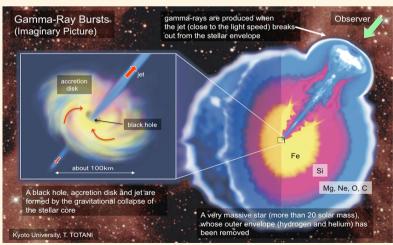
Systematic Observation of Long GRB Host Galaxies in the Subaru/Gemini Time Exchange Program

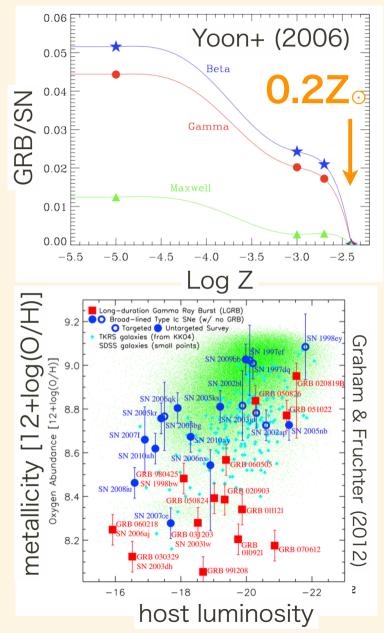

Subaru Users' Meeting FY2015 Yuu NIINO (NAOJ) collaborators: K. Aoki, T. Hashimoto, T. Hattori, S


K. Aoki, T. Hashimoto, T. Hattori, S. Ishikawa, N. Kashikawa, M. Onoue, J. Toshikawa, K. Yabe

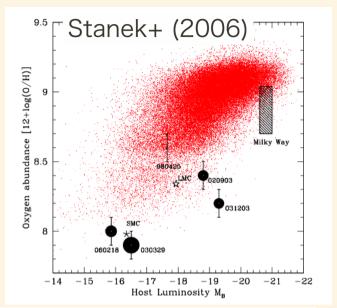
Introduction

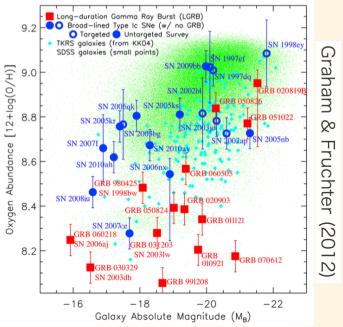
Long Gamma-Ray Bursts (GRBs)

- Transient events in soft γ ray/hard X-ray
 - accompanied by afterglows in X-ray—radio
- duration ~ 2–1000 sec
 - afterglows last hrs—days
- very bright
 - highest GRB spec-z: 8.2
- associated with corecollapse events of massive stars
 - relativistic jets erupted from newly born BH accretion disk/magnetars.

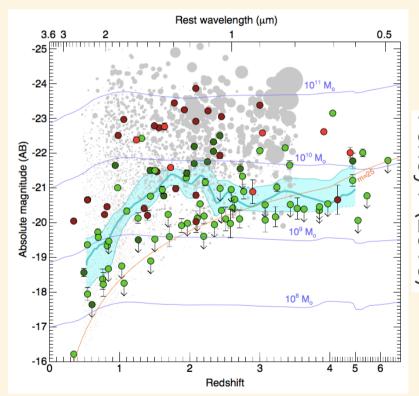


Credit: T. Totani


Long GRB Occurrence & Metallicity


- GRB/core-collapse ~ 1/1000
- Stellar evolution theory:
 - Only a low-metallicity star can maintain rotation to form a GRB central engine.
- Host galaxy observations:
 - Long GRBs preferentially occur in low-metallicity galaxies.
 - A few host galaxies have highmetallicity.
- Metallicity determines the relation between SFR (core-collapse) & R_{GRB}.
 - Quantitative constraint is poor.

Previous Studies of GRB Hosts (1)


- pre–Swift era (< 2004)
 - small number of GRBs with redshift measurements
 - the host galaxies were intensely studied once the redshift is known to be low (≤ 0.3)
- Swift era
 - many GRB redshifts
 - but still < 50%
 - maybe biased against dusty event
 - various groups independently observe their target of interest.
 - more spectra but with uncontrolled sampling

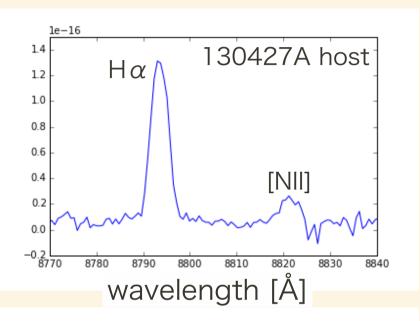
Previous Studies of GRB Hosts (2)

- 2010's: unbiased surveys
 - selection only by γ-ray/ X-ray properties & observing condition
 - observe all objects that fulfill the selection criteria
- difficulties in studying progenitor properties with these samples
 - spanning wide range of redshift (~ 0-6)
 - mainly photometric

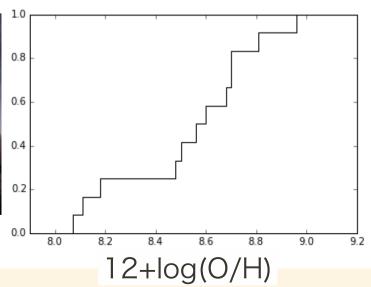
Perley+ (2015)

How can we constrain the metallicity effect?

- Low redshift GRBs are the clue.
 - The metallicity effect would appear most significantly.
 - A wealth of control sample (e.g. SDSS @ $z \le 0.3$).
- Low redshift sub-samples in the unbiased surveys are too small (2-3 long GRBs @ $z \le 0.3$).
- Complete spectroscopy of low redshifts long GRB host galaxies is needed.
 - possible bias: redshift identification
 - less strong at lower redshifts

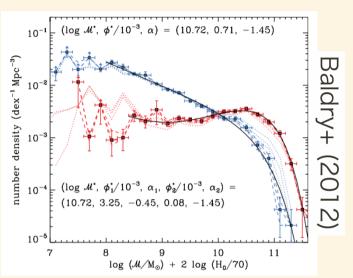

Observations

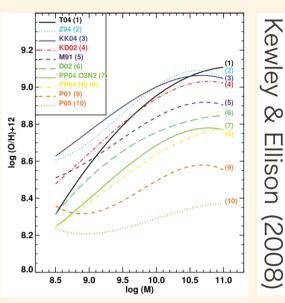
Target Selection

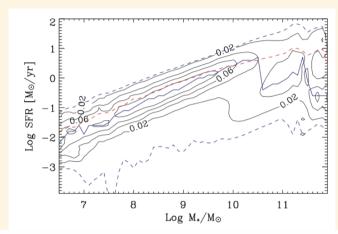

- all long GRBs known @ z ≤ 0.41 (telescope time limited) until Mar. 2014
 - 12 GRBs (excluding XRFs)
 - 7 with known metallicity
 - 5 without sufficient spectroscopy
 - we observe 3 of them (z < 0.35)
 - 2 spectra were published recently (Krühler+ 2015)

Gemini/GMOS Spectroscopy

- The targets are widely spread over RA & DEC.
 - Queue mode capability in the northern
 & southern hemisphere is essential.
- The Subaru-Gemini time exchange.
 - queue mode with GMOS-N/S
- Theoretical metallicity calibration by Kobulnicky & Kewley (2004, KK04), using [OII], Hβ, [OIII], Hα & [NII]

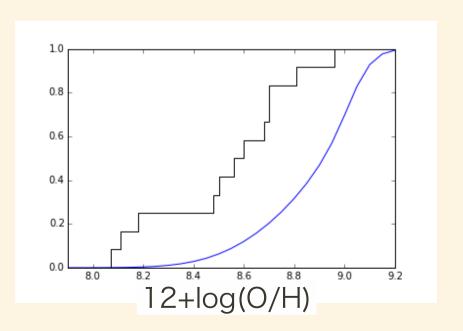


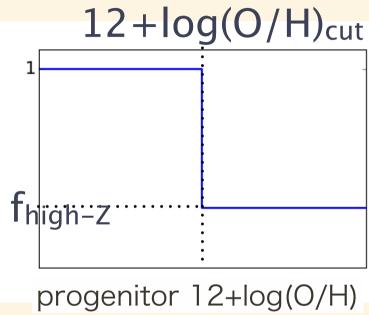




Comparison to General Star Forming Galaxies

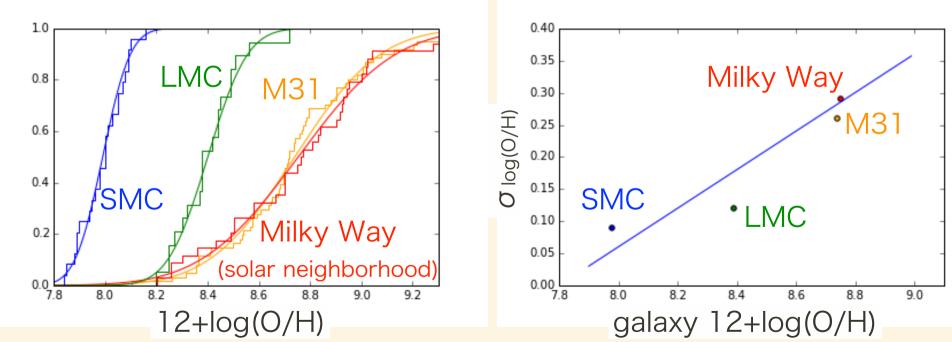
M★, SFR, Metallicity of Galaxies



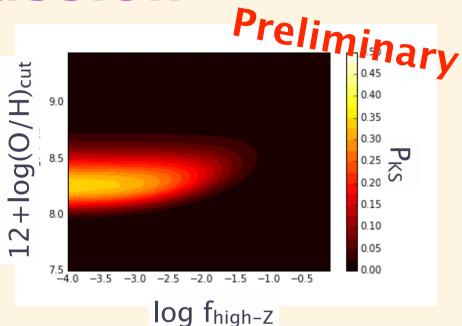

Brinchmann+ (2004), Salim+ (2007)

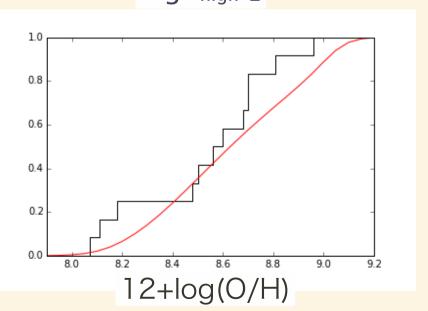
- SFR weighted log(O/H) dist. of general star forming galaxies of local galaxies
 - assuming M_★ function, M_★-Z relation,
 & M_★-SFR (main sequence) relation
- inconsistent with the GRB host galaxies
 - in agreement with the previous results with smaller/incomplete sample

GRB Efficiency Model


- GRB efficiency
 - $\varepsilon_{GRB} = R_{GRB}/SFR$
- assumptions:
 - a step function of "progenitor" metallicity
 - ≠ "host" metallicity
 - 2 parameters:
 - 12+log(O/H)_{cut}
 - fhigh-Z

Internal O/H Variation


- what we observe: host galaxy metallicity
- 12+log(O/H)_{cut}: progenitor metallicity
- We need to know metallicity distribution of young stars in each galaxy.
 - Not well understood



MW: Afflerbach+ (1997), LMC/SMC: Pagel+ (1978), M31: Sanders+ (2012)

Results & Discussion

- Preliminary results suggest:
 - $12 + \log(O/H)_{cut} = 8.1 8.4$
 - $\sim 0.3 0.5 Z_{\odot}$
 - $f_{high-Z} < 3\%$ (0 is the best)
- The power-law ϵ_{GRB} also prefer steep slope index < -4.
- There might be subpopulations among the low-z long GRBs.
 - The sample is too small to discuss the subpopulations.
 - wider redshift range, more recent objects, XRFs

Summary

- Unbiased and redshift selected studies of GRB host galaxies works complementarily to unveil the nature of long GRB progenitors.
 - Redshift selected: constrain progenitor models
 - Unbiased: clarify sampling the bias effects
- Current data prefer progenitor models with sharp cut at $\sim 0.3-0.5Z_{\odot}$ & no high-metallicity GRB production.