The Missing Satellite Problem Outside of the Local Group Masayuki Tanaka, Masashi Chiba, Yutaka Komiyama Mikito Tanaka, Sakurako Okamoto, Takashi Okamoto

LCDM has been extensively tested on large scales

Tegmark et al 2004 ApJ

Current small scale problems in ACDM

- Core-cusp problem
 - Too steep dark matter density profiles of ΛCDM subhalos.
- Missing satellites problem
 - Overabundance of ΛCDM subhalos.
- Too-big-to-fail problem
 - Too concentrated most massive ΛCDM subhalos.

Solutions:

- Baryonic feedbacks?
- Alternative DM models?
- Incomplete observational data?

- Satellite plane problem
 - Anisotropic distribution & coherent motion of dwarf satellites

The missing satellite problem

Moore et al. 1999 DM only simulation Sawala et al. 2014 DM + Baryon simulation

Courtesy: Sakurako Okamoto

Hyper Suprime-Cam

MilkyWay (Licquia et al. 2015): MB= -20.8 +/- 0.4 mag Mv= -21.5 +/- 0.4 mag M*=6e+10Msun

NGC779: d=21.6 Mpc (Tully-Fisher; Sorce+ 2014)
Seeing: 0.5 arcsec in g-band, ~0.7 arcsec in I-band
Exp. = 30min each
B=11.7mag (MB=-20.1), V=11.1mag (MV=-20.7)
M*=5.0e10 Msun, M_DM=1.9e+12 Msun,
r200=248.6 kpc or 37.6 arcmin

NGC2950 : d=22.7 Mpc (Tully-Fisher; Theureau+ 2007)
Seeing: 0.5 arcsec in g-band, ~1.0 arcsec in i-band
Exp. = 30min each
B=11.6mag (MB=-20.3), V=10.9mag (MV=-20.9)
M*=5.8e10 Msun, M_DM=2.3e+12 Msun,
r200=268 kpc or 42.7 arcmin

Masks and junks

We mask stars, bleeding trails, ghosts, as well as (approximate) virial radii of near-field background galaxies.

Dwarf galaxy selection

Dwarf candidates (~100 objects per HSC field of view) are visually inspected.

Simulations: detection completeness and flux biases

- 1. Assume dwarf galaxies have an exponential profile
- 2. Add artificial sources with a range of sizes and magnitudes to the real image
- 3. Detect objects
- 4. Apply masks
- 5. Match the input and output catalogs
- 6. Repeat the above procedure
- 7. Measure the detection completeness and biases in measured fluxes
- 8. Statistically correct for the incompleteness and flux bias

Simulations: detection completeness and flux biases

Preliminary results — cumulative luminosity function

Simulations are from Okamoto (2013, MNRAS, 428, 718).

Preliminary results – cumulative luminosity function

Simulations are from Okamoto (2013, MNRAS, 428, 718).

Preliminary results – cumulative luminosity function

Simulations are from Okamoto (2013, MNRAS, 428, 718).

Preliminary results – size-luminosity relation:

Dwarf galaxies in the Local GroupDwarf galaxies around N779 + N2950

Preliminary results – spatial distribution

Hm... OK, let's wait for a larger sample.

Summary

We started a survey to statistically address the missing satellite problem with Hyper Suprime-Cam on Subaru.

Our pilot observation shows:

- LFs of dwarf galaxies around N779 and N2950 show a factor of ~2 scatter.
- Okamoto et al. models seem to overpredict the abundance of dwarfs.

Our pilot observation was successful and we learned a lot of lessons. Note our current statistics is already comparable to the state-of-the-art work in the field! We now move on to construct a statistical sample of nearby galaxies.