

Statistical Properties of Dust Obscured Galaxies discovered by HSC, VIKING, and WISE

Toba, Nagao et al. 2015, PASJ, 67, 86

Yoshiki TOBA

(Ehime University => ASIAA)

Tohru Nagao, Michael A. Strauss, Kentaro Aoki,

Tomotsugu Goto, Masatoshi Imanishi, Toshihiro Kawaguchi,

Yuichi Terashima, Yoshihiro Ueda, and the HSC-DOGs team

Statistical Properties of Dust Obscured Galaxies discovered by HSC, VIKING, and WISE

- IR Luminosity Function
- IR Luminosity Density 2015, PASJ, 67, 86

Toba+15

Auto Correlation Function

Tohru Nagao, Michael A. Strauss, Kentaro Aoki, Toba+16 in prep.

Dogs are obscured by blanket..

hond

Introduction

What are Dust Obscured Galaxies (DOGs)?

hung chien

Dust Obscured Galaxies

$R - [24] \ge 7.5$ (AB mag)

An optically faint but IR bright objects.

~ ULIRGs

 Most DOGs are ultraluminous infrared galaxies (ULIRGs: L_{IR} ≥ 10¹² L_{sun}).

z ~ 2

 Confirmed from follow-up observations (NIR and MIR spectroscopy).

Calanog+13

Two types of DOGs AGN-dominated

 10^{2}

Power-Law (PL) DOGs

 They show a rising powerlaw SED, which indicates an AGN activity.

Bump DOGs

- They show a rest-frame 1.6 µm "bump" in their SEDs.
- They also show strong PAH emission., which indicates a SF activity.

IR bright DOGs ~ PL DOGs

- The fraction of PL DOGs (i.e., AGN-dominated DOGs) increases with increasing MIR flux.
- IR-bright DOGs are expected to be AGN dominated DOGs.

- The number densities of DOGs decreases with increasing MIR flux., which means IR-bright DOGs are very low.
- It requires a large area survey.

What are the DOGs?

optically faint ULIRGs at z~2

Bump DOGs · PL DOGs

IR bright DOGs ~ PL DOGs

≃ AGN-dominated DOGs

IR-bright DOGs could constitute a key population for understanding the co-evolution of galaxies and SMBHs.

Purpose of this study

(1) Search for IR-bright DOGs based on the HSC with VIKING and WISE

(2) Investigating their photometric and statistical properties

number

Purpose of this study

How do we discover IR bright DOGs?

HSC, VIKING, and WISE

	band	limiting mag (5σ、2")	Total number of objects
HSC S14A_0	i	~26	16,392,815
	У	~24	
VIKING DR1	Z	23.1	14,773,385
	Y	22.3	
	J	22.1	
	Н	21.5	
	Ks	21.2	
ALLWISE	3.4	19.6	747,634,026
	4.6	19.3	
	12	16.4	
	22	14.5	

GAMA 14hr field (~10 deg²)

We used those bands to search for IR-bright DOGs

Sample Selection

Sample Selection

Clean HSC i-selected catalog

Clean VIKING Ks-selected catalog Clean WISE

22 µm-selected

catalog

48 IR-bright DOGs were selected

Type Classification (PL /Bump)

Results and Discussions

Photometric and Statistical properties of IR-bright DOGs

- Spectral Energy Distributions
- WISE colors
- Luminosity Function
- Luminosity Density

SEDs for PL and Bump DOGs

SEDs for PL and Bump DOGs

About 65% of our DOGs sample were classified as PL DOGs

WISE colors

WISE colors

The WISE colors are roughly consistent with those of Mateos et al. (2012, 2013).

Assuming that the redshift distribution for our DOG sample is Gaussian ($z=1.99 \pm 0.45$; Dey et al. 2008)

Assuming that the redshift distribution for our DOG sample is Gaussian ($z=1.99 \pm 0.45$; Dey et al. 2008)

Assuming that the redshift distribution for our DOG sample is Gaussian ($z=1.99 \pm 0.45$; Dey et al. 2008)

Assuming that the redshift distribution for our DOG sample is Gaussian ($z=1.99 \pm 0.45$; Dey et al. 2008)

The shape of LF can be fitted well by double-power law.

Total IR luminosity density pir

Total IR luminosity density pire

```
Murphy et al. 2011 (M11)  
Dey et al. 2008

This work (DOGs)
```

The contribution of ρ_{IR} (IR-bright DOGs) to that of other populations;

```
\rho_{IR} (ULIRGs @z~2): > 9% \rho_{IR} (All DOGs @ z~2): > 15%
```


Preliminary

Current Status of DOGs search

Search for IR-bright DOGs based on latest dataset

Clustering properties of IR-bright DOGs discovered by HSC S15A, VIKING DR2, ALLWISE

Toba, Nagao, Kajisawa et al. in prep.

Spatial Distribution of DOGs

Summary

We newly discovered 48 DOGs based on the HSC, VIKING, and WISE data.

Assuming that the redshift distribution for our DOGs sample ($z = 1.99 \pm 0.45$), we derived the space density of them. The IR LF including data obtained from the literature is fitted well by a double-power law.

We also derived lower limit of IR LD for our sample, and its contributions to the ρ_{IR} (ULURGs) and ρ_{IR} (All DOGs) are >9%, and >15%, respectively

The clustering analysis of 526 DOGs discovered by latest dataset could indicates that they are strongly clustered.

