Next Generation IR Standard Stars Perfect Black Body Stars in the Sky

• Report on Intensive Program 2005-6 by Doi et al.

a) Morokuma et al. 2010 (PASJ, 62, 19)

b) Suzuki et al. 2012 (ApJ, 746, 85)

- Re-Calibration of SDF/SXDF Zeropoints
 c) Yagi et al. 2013 (PASJ, 65, 22)
- Next Generation IR Standard Stars

Need for IR Standards

Nao Suzuki (LBNL=>Kavli IPMU)

SN Factory, Palomar Transient Factory (PTF), SuperNovaLegacySurvery (SNLS), Suprnova Cosmology Project (SCP)

HST Cluster Supernova Survey

Keck AO Photometry of z=1.3 SNIa (Melbourne et al. 2007)
 IRAC Shallow Survey (Eisenhardt et al. 2008)
 Color Magnitude at z=1 Cluster (Santos et al. 2009)
 XMMXCS J2215.9-1738 at z-1.457 (Hilton et al. 2007)
 Unusual Transient, SCP05-F006 (Barbary et al. 2009)
 Multiply Imaged Lensed System (Huang et al. 2009)
 X-ray from IRAC z=1.4 Cluster (Brodwin et al. 2011)
 Weak Lensing Studies + Scaling Relation (Jee et al. 2011)

XMMU J2235-2557 z=1.4

- 9. Weak Lensing Study (Jee et al. 2009)
- 10. Multi-Wavelength Study (Rosati et al. 2009)
- 11. Galaxies Properties (Strazzullo et al. 2011)

HST Cluster SN Survey

Nao Suzuki & SCP PI: Saul Perlmutter

Unusual Transient SCP06-F6 Barbary et al. 2009 z=1.2 Superlumious Superova by Quimby

Image

Light Curve

Spectra

THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE*

 N. SUZUKI^{1,2}, D. RUBIN^{1,2}, C. LIDMAN³, G. ALDERING¹, R. AMANULLAH^{2,4}, K. BARBARY^{1,2}, L. F. BARRIENTOS⁵, J. BOTYANSZKI², M. BRODWIN^{6,41}, N. CONNOLLY⁷, K. S. DAWSON⁸, A. DEY⁹, M. DOI¹⁰, M. DONAHUE¹¹, S. DEUSTUA¹², P. EISENHARDT¹³, E. ELLINGSON¹⁴, L. FACCIOLI^{1,2}, V. FADEYEV¹⁵, H. K. FAKHOURI^{1,2}, A. S. FRUCHTER¹², D. G. GILBANK¹⁶, M. D. GLADDERS¹⁷, G. GOLDHABER^{1,2,42}, A. H. GONZALEZ¹⁸, A. GOOBAR^{4,19}, A. GUDE^{2,20}, T. HATTORI²¹, H. HOEKSTRA²², E. HSIAO^{1,2}, X. HUANG^{1,2}, Y. IHARA^{10,43}, M. J. JEE²³, D. JOHNSTON^{11,24}, N. KASHIKAWA²⁵, B. KOESTER^{11,25}, K. KONISHI²⁷, M. KOWALSKI²⁸, E. V. LINDER^{1,2}, L. LUBIN²³, J. MELBOURNE²⁹, J. MEYERS^{1,2}, T. MOROKUMA^{10,25,43}, F. MUNSHI^{2,30}, C. MULLIS³¹, T. ODA³², N. PANAGIA¹², S. PERLMUTTER^{1,2}, M. POSTMAN¹², T. PRITCHARD^{2,25}, J. RHODES^{13,29}, P. RIPOCHE^{1,2}, P. ROSATI³⁴, D. J. SCHLEGEL¹, A. SPADAFORA¹, S. A. STANFORD^{23,35}, V. STANISHEV^{19,36}, D. STERN¹³, M. STROVINK^{1,2}, N. TAKANASHI²⁵, K. TOKITA¹⁰,

M. WAGNER³⁷, L. WANG³⁸, N. YASUDA³⁹, AND H. K. C. YEE⁴⁰

(THE SUPERNOVA COSMOLOGY PROJECT) ¹ E.O. Lawrence Berkeley National Lab, Berkeley, CA 94720, USA; nsuzuki@lbl.gov, rubind@berkeley.edu ² Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA 3 Australian Astronomical Observatory, Epping, NSW 1710, Australia; clidman@aao.gov.au 4 The Oskar Klein Centre for Cosmo Particle Physics, AlbaNova, SE-106 91 Stockholm, Sweden ⁵ Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile ⁶ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 7 Department of Physics, Hamilton College, Clinton, NY 13323, USA 8 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA ⁹ National Optical Astronomy Observatory, Tucson, AZ 85726-6732, USA 10 Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan ¹¹ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 12 Space Telescope Science Institute, Baltimore, MD 21218, USA ¹³ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. ¹⁴ Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309, USA 15 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA 94064, USA 16 Department of Physics and Astronomy, University Of Waterloo, Waterloo, ON N2L 3G1, Canada 17 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA 18 Department of Astronomy, University of Florida, Gainesville, FL 32611, USA ¹⁹ Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden ²⁰ School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455, USA ²¹ Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720, USA 22 Leiden Observatory, Leiden University, Leiden, The Netherlands 23 Department of Physics, University of California Davis, Davis, CA 95616, USA 24 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA ²⁵ National Astronomical Observatory of Japan, Tokyo 181-8588, Japan ²⁶ Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637, USA 27 Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan 28 Physikalisches Institut Universität Bonn, Germany ²⁹ Caltech Optical Observatories, Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 30 Astronomy Department, University of Washington, Seattle, WA 98195, USA 31 Wachovia Corporation, NC6740, Winston-Salem, NC 27101, USA 32 Department of Astronomy, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan 33 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA 34 ESO, D-85748 Garching, Germany ³³ Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 36 CENTRA-Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, 1049-001 Lisbon, Portugal 37 Space Sciences Lab, University of California, Berkeley, CA 94720, USA 38 Department of Physics, Texas A & M University, College Station, TX 77843, USA ³⁹ Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583, Japan ⁴⁰ Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada Received 2011 February 15; accepted 2011 July 6; published 2012 ???

ABSTRACT

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the *Hubble Space Telescope (HST*) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of *HST*-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density, $\rho_{DE}(z)$, at redshifts 1.0 < z < 1.6by 18% (including systematic errors). For a flat Λ CDM universe, we find $\Omega_{\Lambda} = 0.729 \pm 0.014$ (68% confidence level (CL) including systematic errors). For a flat ω CDM model, we measure a constant dark-energy equation-of-state parameter $w = -1.013_{-0.073}^{40.068}$ (68% CL). Curvature is constrained to $\sim 0.7\%$ in the σw CDM model and to $\sim 2\%$ in a

ACS Image Reduction v125

Λ Today

Combination of SNe with: BAO (Percival et. al., 2010) CMB (WMAP data, 2011) For a flat Universe:

LCDM: $\Omega_m = 0.271 \pm 0.012(\text{stat}) \pm 0.014(\text{sys})$ with curvature: oLCDM: $\Omega_k = 0.002 \pm 0.005(\text{stat}) \pm 0.005(\text{sys})$

Scale of the Universe

Accelerating Universe

Expansion History of the Universe

$w=P/\rho$: equation of state Q. Is w-1?

wCDM: $w = -1.008 \pm 0.052(\text{stat})$ $-1.013 \pm 0.070(\text{sys})$ SNe = BAO = CMB ... and allowing for curvature: owCDM $w = -1.006 \pm 0.058(\text{stat})$ $-1.003 \pm 0.093(\text{sys})$ with systematics

•w=-1 : cosmological constant •w=0 : matter •w=1/3: radiation $E \propto a^{-3(1+w)}$

Systematic Error Limits the Precision Cosmology Today Stat Err ~ 5%, Systematic Err ~ 5%

Suzuki et al 2012 (Supernova Cosmology Project)

Re-Calibration of SDF/SXDS Photometric Catalogs of Suprime-Cam with SDSS Data Release 8

Masafumi YAGI,¹ Nao SUZUKI,² Hitomi YAMANOI,¹ Hisanori FURUSAWA,³ Fumiaki NAKATA,⁴ and Yutaka ¹Optical and Infrared Astronomy Division, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokya yagi.masafumi@nao.ac.jp

² E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720, USA

³ Astronomy Data Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-858 ⁴ Subaru Telescope, 650 North A'ohoku Place, Hilo, Hawaii 96720, USA

Cosmology in 10 years

None of standard stars from SNF will be used for HSC and others

• They are too bright (HSC/LSST saturates at 17-18th mag)

• No accurate IR coverage

THE ASTRONOMICAL JOURNAL, 116:2475-2488, 1998 November © 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A NEW SYSTEM OF FAINT NEAR-INFRARED STANDARD STARS

S. E. PERSSON,¹ D. C. MURPHY,¹ W. KRZEMINSKI,¹ M. ROTH,¹ AND M. J. RIEKE² Received 1998 June 3; revised 1998 July 28

ABSTRACT

A new grid of 65 faint near-infrared standard stars is presented. They are spread around the sky, lie between 10th and 12th magnitude at K, and are measured in most cases to precisions better than 0.001 mag in the J, H, K, and K_s bands; the latter is a medium-band modified K. A secondary list of red stars suitable for determining color transformations between photometric systems is also presented. *Key words:* infrared radiation — stars: general — techniques: photometric

TABLE 2 Infrared Standard Stars																
												No.	HST	R.A. (J2000.0)	Decl. (J2000.0)	J
9101	P525-E	00 24 28.3	07 49 02	11.622	0.005	16	11.298	0.005	16	11.223	0.008	10	11.223	0.005	17	4
9103	S294-D	00 33 15.2	- 39 24 10	10.932	0.006	15	10.657	0.004	16	10.596	0.005	9	10.594	0.004	16	1
9104	S754-C	01 03 15.8	-04 20 44	11.045	0.005	17	10.750	0.005	17	10.693	0.010	8	10.695	0.005	17	2
9105	P530-D	02 33 32.1	06 25 38	11.309	0.010	8	10.975	0.006	8	10.897	0.006	7	10.910	0.005	8	1
9106	S301-D	03 26 53.9	- 39 50 38	12.153	0.007	11	11.842	0.005	11	11.772	0.010	6	11.788	0.006	11	1
9107	P247-U	03 32 03.0	37 20 40	11.934	0.005	16	11.610	0.004	18	11.492	0.011	6	11.503	0.005	18	3
0109	D522 D	02 41 02 4	06 56 12	11 727	0.000	0	11 421	0.006	0	11 227	0.009	0	11 226	0.005	0	1

Top 10 Subaru Papers

#	Bibcode Authors	Cites Title	Date	List of Links Access Control Hel	<u>dp</u>
1	2010ApJ716712A Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M. S.; Conley, A.; Dawson, K. S.; Deustua, S. E.; and 36 coauthors	652.000 Spectra and Hubble S	06/2010 Space Telescope Light C	$\frac{A}{Urves of Six Type Ia}$	Supernovae at $0.511 < z < 1.12$ and the Union2 Compilation Dark Energy
2	2007ApJS1721S Scoville, N.; Aussel, H.; Brusa, M.; Capak, P.; Carollo, C. M.; Elvis, M. Giavalisco, M.; Guzzo, L.; Hasinger, G.; Impey, C.; and 12 coauthors	535.000 The Cosmic Evolutio	09/2007 n Survey (COSMOS):	<u>A E F X</u> Overview	COSMOS
3	2007ApJ654897B Belokurov, V.; Zucker, D. B.; Evans, N. W.; Kleyna, J. T.; Koposov, S.; Hodgkin, S. T.; Irwin, M. J.; Gilmore, G.; Wilkinson, M. I.; Fellhauer, M.; and 24 coauthors	415.000 Cats and Dogs, Hair	01/2007 and a Hero: A Quintet of	A <u>E F X</u> of New Milky Way Co	<u>RCSNU</u> Companions
4	2009ApJ690.1236I Ilbert, O.; Capak, P.; Salvato, M.; Aussel, H.; McCracken, H. J.; Sanders, D. B.; Scoville, N.; Kartaltepe, J.; Arnouts, S.; Le Floc'h, E.; and 53 coauthors	411.000 Cosmos Photometric	01/2009 Redshifts with 30-Ban	A E F X is for 2-deg2	^R COSMOS
5	2002PASL54833M Miyazaki, Satoshi; Komiyama, Yutaka; Sekiguchi, Maki; Okamura, Sadanori; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Imi, Katsumi; Kimura, Masahiko; Nakata, Fumiaki; and 5 coauthors	398.000 Subaru Prime Focus	12/2002 Camera Suprime-Car	<u>AEEX</u>	suprieCam
6	2007ApJS17270L Lilly, S. J.; Le Fèvre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Carollo, C. M.; Hasinger, G.; Kneib, JP.; Iovino, A.; and 67 coauthors	368.000 zCOSMOS: A Large	09/2007 VLT/VIMOS Redshif	A E F X Survey Covering 0 <	< z < 3 in the COSMOS Field COSMOS Field
7	<u>2005Natur.434871F</u> Frebel, Anna; Aoki, Wako; Christlieb, Norbert; Ando, Hiroyasu; Asplund, Martin; Barklem, Paul S.; Beers, Timothy C.; Eriksson, Kjell; Fechner, Cora; Fujimoto, Masayuki Y.; and 9 coauthors	313.000 Nucleosynthetic sign	04/2005 atures of the first stars	A E X HDS	: Metal Poor Sta
8	2007ApJS17299C Capak, P.; Aussel, H.; Ajiki, M.; McCracken, H. J.; Mobasher, B.; Scoville, N.; Shopbell, P.; Taniguchi, Y.; Thompson, D.; Tribiano, S.; and 48 coauthors	310.000 The First Release CO	09/2007 SMOS Optical and Ne	A E F X ar-IR Data and Catalo	
9	<u>2002ApJ568L75H</u> Hu, E. M.; Cowie, L. L.; McMahon, R. G.; Capak, P.; Iwamuro, F.; Kneib, JP.; Maihara, T.; Motohara, K.	283.000 A Redshift z=6.56 G	04/2002 alaxy behind the Cluste	$\underline{A} \underline{E} \underline{F} \underline{X}$ Abell 370	<u>D RC SN OUH</u>
10	2004ApJ6116600 Ouchi, Masami; Shimasaku, Kazuhiro; Okamura, Sadanori; Furusawa, Hisanori; Kashikawa, Nobunari; Ota, Kazuaki; Doi, Mamoru; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; and 6 coauthors	280.000 Subaru Deep Survey	08/2004 . V. A Census of Lyma	A E F X n Break Galaxies at z-	R C S N Q U H and 5 in the Subaru Deep Fields: Photometric Properties

Top 10 Astro Papers in 2012 (ApJ, AA, Nature etc)

#	Bibcode Authors	Cites Title	Date	List of Links Access Cont	rol Help			
1	2012ApJS19931N Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; and 227 coauthors	509.000 Fermi Large Area Tel	04/2012 lescope Second Source	A E E Catalog	<u>x</u> D	<u>RCS</u>	<u>n ou</u>	Fermi
2	2012ApJ74685S Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L. F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; and 56 coauthors	316.000 The Hubble Space Te	02/2012 elescope Cluster Supern	$\frac{\Delta}{ST}$	Improving to Sul	the Dark-energy C $Oaru$	onstraints a	above z > 1 and Building an Early-type-hosted S
3	2012MNRAS.427.3435A Anderson, Lauren; Aubourg, Eric; Bailey, Stephen; Bizyaev, Dmitry; Blanton, Michael; Bolton, Adam S.; Brinkmann, J.; Brownstein, Joel R.; Burden, Angela; Cuesta, Antonio J.; and 67 coauthors	233.000 The clustering of gala	12/2012 axies in the SDSS-III Ba	A E E aryon Oscillatio	X on Spectrosc	<u>R C</u> S opic Survey: baryo	U on acoustic	oscillations in the Data Release 9 spectroscopic
4	2012ApJS20321A Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Aubourg, Éric; Bailey, Stephen; Balbinot, Eduardo; Barnes, Rory; and 226 coauthors	206.000 The Ninth Data Relea	12/2012 ase of the Sloan Digital	A E E Sky Survey: Fi	X D rst Spectroso	Copic Data from th	QU e SDSS-III	Baryon Oscillation Spectroscopic Survey
5	2012JCAP08007W Weniger, Christoph	206.000 A tentative gamma-ra	08/2012 ay line from Dark Matte	A E r annihilation at	X the Fermi L	R C arge Area Telesco	U pe	Fermi
6	<u>2012ApJS.20115H</u> Howard, Andrew W.; Marcy, Geoffrey W.; Bryson, Stephen T.; Jenkins, Jon M.; Rowe, Jason F.; Batalha, Natalie M.; Borucki, William J.; Koch, David G.; Dunham, Edward W.; Gautier, Thomas N., III; and 57 coauthors	183.000 Planet Occurrence wi	08/2012 ithin 0.25 AU of Solar-t	A E E ype Stars from	X D Kepler	<u>RCS</u>	U	Kepler
7	2012A&A537A.146E Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; and 2 coauthors	175.000 Grids of stellar mode	01/2012 Is with rotation. I. Mode	A E F els from 0.8 to	<u>X</u> <u>D</u> 120 M _☉ at s	2 <u>R C</u> S olar metallicity (1	ste	llar Model
8	<u>2012JCAP07054B</u> Bringmann, Torsten; Huang, Xiaoyuan; Ibarra, Alejandro; Vogl, Stefan; Weniger, Christoph	173.000 Fermi LAT search fo	07/2012 r internal bremsstrahlun	∆ E g signatures fro	X om dark matt	R C ter annihilation	U	Fermi
9	<u>2012MNRAS.422.1203B</u> Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj	144.000 The Milky Way's brig	05/2012 ght satellites as an appar	A E F ent failure of A	X CDM	<u>R C</u> <u>S</u>	Si	mulation
10	2012MNRAS.427.2132P Padmanabhan, Nikhil; Xu, Xiaoying; Eisenstein, Daniel J.; Scalzo, Richard; Cuesta, Antonio J.; Mehta, Kushal T.; Kazin, Eyal	138.000 A 2 per cent distance	12/2012 to z = 0.35 by reconstru	A E E acting baryon a	X coustic oscil	<u>R</u> <u>C</u> lations - I. Method	U ls and appli	cation to the Slove Digital Sky Survey

Mostly Astro Community

Ouchi et al 2004

Only 37% from Astro Community

Suzuki et al 2012 (SCP)

Precision Cosmology Requirements

- Precise Estimate of Errors
- Covariance Matrix
- Cross Calibrations & Cross Checks
- Reproducibility

The Origins of Systematic Errors Today

- I : Zero Point is not accurate enough
- II : Standard Star Calibration (HST CALSPEC) is not accurate enough

BD17 : SDSS mag Definition SDSS vs HST

Figure 8. Ratio between the CALSPEC fluxes and those calculated here using redetermined atmospheric parameters for the HST primary standards. The zero point of the flux scale of the CALSPEC fluxes is given by Landolt V-band photometry, while here it is set by SDSS PT ugr photometry (but see text for an exception for GD 153). The two scales are inconsistent by 1.5 % for GD 71.

Allende Prieto, Carlos et al. 2009

CALSPEC 2010: Model vs. STIS obs.

CALSPEC Model 2010 / STIS 2010

CALSPEC 2003-10: Model vs. STIS obs.

CALSPEC : STIS 2003 / STIS 2010

CALSPEC Model 2003 / STIS 2010

CALSPEC Model 2003 / Model 2010

Model Uncertanities

	V	B-V	$T_{\rm eff}$	$\log g$	$_{\rm spectral}$
			[K]		type
G191-B2B	11.781	-0.33	$61193 (241)^a$	$7.492 \ (0.012)^a$	DAO
			$60929 \ (993)^b$	$7.55 \ (0.05)^b$	
GD 153	13.346	-0.29	$38686 \ (152)^a$	$7.662 \ (0.024)^a$	DA1
			$40320 \ (626)^b$	$7.93 \ (0.05)^b$	
GD 71	13.032	-0.25	$32747 (92)^a$	$7.683 (0.023)^a$	DA1
			$33590 \ (483)^b$	$7.93 \ (0.05)^b$	

a b

(Finley et al., 1997) (Gianninas et al., 2011)

Nicolas Regnault

Figure 2.1.: Comparison between the Tübingen model (TMAW) and the Bergeron model for star GD 71. Both models were computed for pure hydrogen atmosphere, with $T_{\rm eff} = 33590K$ and $\log g = 7.93$. Upper panel: model spectra (shifted, to distinguish them). Lower panel: ratio.

Nicolas Regnault

Trust No One

I don't Trust CALSPEC!
I don't Trust HST/STIS!
I don't Trust White Dwarf Models!

Discovery of Perfect Black Body Spectra: found as a Quasar Target Only 20 stars out of a million stars

• DR8 : 605,772 stars => 5 stars

- DR9 : 110,929 stars=> 9 stars
- DR10: 81,892 stars=> 10 stars

Looking at the Future with JWST today 0.3%, but we can do 0.1%

Magnitude Errors are Correlated

g mag

Near Future plan:

- Dec 2013 : 8m-Subaru Time (approved)
- We will observe these stars with Subaru (MOIRCS) in K-band (2.2 micron)
- UH88 (approved) will have S/N=100 data
- Aim to Publish Discovery Paper in 2014
- If no IR excess is detected, we will write a discovery paper and send it to HST (cycle 22 proposal)
- We aim to re-calibrate SDSS photometry at 20th mag with 4 decimal numbers with 0.1% accuracy
- GAIA (2013-2020) will measure the distances to these stars

What I will do: with M. Fukugita, Tim Beers and SDSS collaboration

- Step I : Replace BD17 by perfect black body spectra
- Step II : Re-establish SDSS mag in AB
- Step III : Re-measure zpt offset in covariance matrix form using 5-band SDSS photometry, 2-band GALEX photometry, and SDSS-I/II/III spectra for 320,751 F-stars
- Publish model spectra and synthetic mag of 320,751 F-stars (=20 stars / square degree)

Don's use BD17 New Observations Collaborators

- UH88 Fall 2013 (Postponed) : 1 night
- Subaru MOIRCS (H-, K-band) in Dec 2013
- HST/WFC3 Cycle 22 Proposal
- Establish F-Star Spectra Network
- M. Fukugita (IPMU), R. Bohlin, S. Deustua (STScI), T. Beers (NOAO), N. Regnault (LPNHE), A. Conley (Colorado), SDSS Friends, Your Name here

Let's think outside the Box "In 2020, which standard stars do we use?"

- JWST is coming in 5 years
- Imagine HyperSuprimeCam + JWST SNIa Survey at z =2.0 & Discovering PopIII
- GAIA (successful launch) will give us an excellent new stellar photometry and distances

Backup Slides

HST Cluster Supernova Survey

- I. Survey Overview (Dawson et al. 2009)
- II. SNIa Cluster Rates (Barbary et al. 2012)
- III. SNIa Host Galaxy Studies (Meyers et al. 2012)
- IV. NICMOS Non-Linearity (Ripoche et al. 2012)
- V. SNIa Photometry & Cosmology (Suzuki et al. 2012)
- VI. SNIa Field Rates (Barbary et al. 2012)

Spectroscopic Follow-up (Morokuma et al. 2010) NICMOS Calibration (Hsiao et al. 2011)

Joshua Meyers et al. 2012

AB Magnitude Definition

$$ABmag = -2.5log_{10} \frac{\int R \frac{f_{\nu}}{\nu} d\nu}{\int \frac{R}{\nu} d\nu} - 48.6$$

$$ABmag = -2.5log_{10} \frac{\int \lambda R f_{\lambda} d\lambda}{\int \frac{R}{\lambda} d\lambda} - 2.407948$$

AB Mag != SDSS Mag

$$ABmag(u) = -2.5log_{10} \frac{\int \lambda R f_{\lambda} d\lambda}{\int \frac{R}{\lambda} d\lambda} - 2.407948 - 0.042$$

$$ABmag(g) = -2.5log_{10} \frac{\int \lambda R f_{\lambda} d\lambda}{\int \frac{R}{\lambda} d\lambda} - 2.407948 + 0.036$$

$$ABmag(r) = -2.5log_{10} \frac{\int \lambda R f_{\lambda} d\lambda}{\int \frac{R}{\lambda} d\lambda} - 2.407948 + 0.015$$

$$ABmag(i) = -2.5log_{10} \frac{\int \lambda R f_{\lambda} d\lambda}{\int \frac{R}{\lambda} d\lambda} - 2.407948 + 0.013$$

$$ABmag(z) = -2.5log_{10} \frac{\int \lambda R f_{\lambda} d\lambda}{\int \frac{R}{\lambda} d\lambda} - 2.407948 - 0.002$$