High-albedo C-type asteroids in the outer main belt: AKARI and Subaru observations Fumihiko Usui⁽¹⁾, Toshihiro Kasuga⁽²⁾, Sunao Hasegawa⁽³⁾, Daisuke Kuroda⁽²⁾, and Takafumi Ootsubo⁽⁴⁾ (1) University of Tokyo, (2) NAOJ, (3) ISAS/JAXA, (4) Tohoku University High-albedo C-complex Asteroids in the Outer Main Belt: The Near-infrared Spectra Kasuga, et al. (2013) AJ 146, 1 ## High-albedo C-type asteroids in the outer main belt - Most C-type asteroids are considered as low albedo dark objects and are associated with carbonaceous chondrites (Chapman+ 1975). - Recently <u>high-albedo</u> C-type asteroids were identified with the infrared astronomical satellite AKARI. - Ice or frost may exist on surface of C- or Dtype asteroids in the outer main belt (Campins+ 2010; Rivkin&Emery 2010; Licandro+2011; Fernández+ 2009). - There is no NIR spectroscopic survey for water ice on high-albedo C-type asteroids. 1150 C-type asteroids observed with AKARI # Observations with the Subaru Telescope (2012/02/16 UT) - IRCS + AO188 (asteroids as NGS), non-sidereal tracking - 52mas, JH + HK grism spectroscopy, slit = 0.9 arcsec ($\lambda/\Delta\lambda \sim 130$) - exposure : 120 sec \times 4 -- 180 sec \times 8 | | a
[AU] | e | <i>i</i>
[deg] | <i>d</i>
[km] | $ ho_{v}$ | type | r _н
[AU] | $V_{\sf mag}$ | |--------------------|-----------|-------|-------------------|------------------|------------------------|------|------------------------|---------------| | (723)
Hammonia | 2.995 | 0.054 | 4.99 | 28 ^{±1} | 0.29 ^{± 0.03} | С | 3.088 | 14.68 | | (936)
Kunigunde | 3.131 | 0.178 | 2.37 | 38 ^{±1} | 0.12 ^{± 0.01} | В | 3.682 | 15.19 | | (1276)
Ucclia | 3.177 | 0.095 | 23.28 | 30 ^{±1} | 0.14 ^{± 0.01} | С | 2.935 | 14.92 | | (1576)
Fabiola | 3.146 | 0.168 | 0.95 | 26 ^{±2} | $0.10^{\pm 0.02}$ | В | 3.548 | 16.97 | | (as of 2012/02/16) | | | | | | | | | #### Results ### Fitting with intimate mixture model ### **Summary** We carried out NIR spectroscopic observations for high-albedo C-type asteroids using Subaru/IRCS+AO188 to investigate the compositions of these objects. - Water ice absorption features near 1.5 and 2.0 μ m were not detected in our four targets. - Featureless or possible weak broad absorption band of these asteroids can be reproduced by Mg-rich (60 -- 95%) amorphous pyroxenes (or, crystalline silicates). - The results imply that Mg-rich silicates are responsible for high albedo of these C-type asteroids (c.f., Emery&Brown 2004; Lucey&Noble 2008).