Science with the deep layer

Mariska Kriek for Princeton University

The deep layer

- Depth: g=29.8, r=29.3, i=28.9, z=28.2, y=27.4
- Area: 5 arcmin²
- **4** Narrow bands at z ~ 4, 5, 6, 7
- Main science goals:
 - **♦** Dropouts / Lyman break galaxies (LBGs) at $3.5 \le z \le 6.0$
 - ightharpoonup Lyman Alpha emitters (LAEs) at z = [4,5,6,7]

Comparison massive galaxies at z~2.5 and z~3.5

Comparison massive galaxies at z~2.5 and z~3.5

Science with dropouts / LBGs

- UV Luminosity functions: star formation history (SFH) of the early universe (e.g., Shimasaku et al. 2005, Yoshida et al. 2006, Tresse et al. 2007, Bouwens et al. 2007)
- Clustering: importance of the environment for the SFH of galaxies

SFR density of the universe

Science with dropouts / LBGs

- UV Luminosity functions: star formation history (SFH) of the early universe (e.g., Shimasaku et al. 2005, Yoshida et al. 2006, Tresse et al. 2007, Bouwens et al. 2007)
- Clustering: importance of the environment for the SFH of galaxies

Clustering of dropouts

Ouchi et al. 2005:

z~4 LBGs in the Subaru / XXM Newton deep field (1 deg²)

SFR limits from UV continuum

g=29.8 r=29.3 i=28.9 z=28.2

SFR limits from UV continuum

g=28.5 r=28.1 i=27.7 z=27.0

Comparison to current LBG studies

UV Luminosity function: less influenced by cosmic variance

Clustering: deep layer 5 x larger area & about 1.5 mag deeper or 20 x larger area at the same depth

Science with LAEs

- Nature of Lyman Alpha emitters
 - Early phases of star formation, low-mass galaxies
 - High EW sources: lyman alpha blobs
- Probing reionization
 - Clustering of LAEs

Nature of LAEs?

Gawiser et al. 2006

Steidel et al. 2000

Science with LAEs

- Nature of Lyman Alpha emitters
 - Early phases of star formation, low-mass galaxies
 - High EW sources: lyman alpha blobs
- Probing reionization
 - Clustering of LAEs

Clustering of LAEs and Reionization

SFR limits for the deep layer from Lyα

Volumes in Mpc³:

z~4: 4.6x10⁶

z~5: 4.2x10⁶

z~6: 3.7x10⁶

z~7: 3.4x10⁶

Comparison to current LAE studies

- Ouchi et al. (2007):
 - \star z~3.1: AB= 25.3, 1 deg²
 - \star z~3.7, AB = 24.7, 1 deg²
 - \star z~5.7, AB = 26.0, 1 deg²
- Kashikawa et al. (2006):
 - \star z~6.5, AB = 26.0, 0.25 deg²
- Ota et al. (2007):
 - \star z~7.0, AB = 24.9, 0.25 deg²

LAEs at z~7.0

Comparison to current LAE studies

Ouchi et al. (2007):

- \star z~3.1: AB= 25.3, 1 deg²
- \star z~3.7, AB = 24.7, 1 deg²
- \star z~5.7, AB = 26.0, 1 deg²

Kashikawa et al. (2006):

- \star z~6.5, AB = 26.0, 0.25 deg²
- Ota et al. (2007):
 - \star z~7.0, AB = 24.9, 0.25 deg²

Deep layer (300 min)

- \star z~4: AB = 26.9, 5 deg²
- \star z~5: AB = 26.8, 5 deg²
- \star z~6: AB = 26.3, 5 deg²
- \star z~7: AB = 25.7, 5 deg²

Thank you!