Survey Observations of Small Solar System Bodies by Suprime-Cam (SC)

Fumi Yoshida (NAOJ)

1. Some results from the surveys using the Suprime-Cam.

2. Proposed observation using the Hyper Suprime-Cam

Surveys using Suprime-Cam

(1) Main belt asteroids survey (SMBAS) 2 Jovian Trojans survey (SMBAS) 3 Irregular satellites survey (Univ. of Hawaii) 4 Kuiper belt objects survey (1,2,4) were done by Japanese research groups. \diamond They look different surveys, but they shared the same data from the same 3 nights. \diamond Let me introduce mainly (1) and (2).

1 Main belt asteroids survey

- Subaru Main Belt Asteroids Survey (SMBAS) Aim : investigate the size distribution of small MBAs. (D<1km)
- SMBAS-I Feb. 22 and 25, 2001 (UT)
- SMBAS-II Oct. 21, 2001 (UT)

	Searched area (deg ²)	Single exp. Time (min)	Used filters	Limiting magnitude for MBAs
SMBAS-I	3(14 fields*)	7	R	24.4
SMBAS-II	4(16 fields)	2	B, R	24.2
* FOV 0.23 deg ²	The deepest			

Searched sky regions; oppositions, near the ecliptic (< ±3 deg).

Moving objects on one CCD chip

Animation of moving objects images taken with 2 min - exp. for one night

Grouping of moving objects by their motion

- We can divide moving objects into several groups having the different heliocentric distance by their motions.
- Velocity of motion → heliocentric distance, i.e. approximate semi-major axis (a) (under assumption e = 0)

 Apparent mag.(m_R) + a → Absolute mag.(H) (under assumption e = 0) $H = m_R - 5\log(a (a - 1))$
 H → diameter (D km) log D (km) = 3.13 - 0.5logA - 0.2H A=0.09 --- SMBAS-I, A_S=0.21(S-type asteroid), A_C=0.04(C-type) --- SMBAS-II

Size distributions

Detection limit: R~24.4 mag

 $H_v \sim 20 \text{ mag}$

D~400m (all), 300m (for S), 600m (for C)

Comparison of the size distributions with MBAs, NEAs and planetary impactors

Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., and Kring, D. A., 2005, Science, 309, 1847-1850. The origin of planetary impactors in the inner solar system.

2 Jovian Trojans (JTs) survey

Aim : The investigation of size distribution and total population of L4 and L5 Trojans

Table 1. Slopes of cumulative size distributions for L4 and L5 Trojans with different size ranges.

Depletion?

Group	Slope (b)	Size range	Reference
		D (km)	
L4	1.3 ± 0.1	2 < D < 5	SMBAS-I YN2005
L4	2.4 ± 0.1	5 < D < 10	SMBAS-I YN2005
L4	2.0 ± 0.3	4 < D < 40	Jewitt <i>et al.</i> (2000)
L4	2.0 ± 0.1	20 < D < 93	Known Trojan catalog [*]
L5	2.1 ± 0.3	2 < D < 5	SMBAS-II (This work)
L5	2.1 ± 0.1	$20 < D < \!93$	Known Trojan catalog*

 $^{*}\ http://cfa-www.harvard.edu/iau/lists/JupiterTrojans.html$

Population asymmetry between L4 and L5 swarms

Sky number density
 L4 JT (D>2km) 14.7±2.3/deg² at 32° ahead of L4 point
 L5 JT (D>2km) 13.8±1.9/deg² at 22° behind of L5 point

Model	$N_{ m Gauss}(>2 m km)$	$N_{ m Max-Gauss}(>2 m km)$
L4	$\sim 1.6 imes 10^5_{\star a}$	
L4	$2.4 \pm 0.38 \times 10^{5}_{\star b}$	$6.3 \pm 1.0 imes 10^4_{\star c}$
L5		$3.4\pm0.54\times10_{\star c}^4$
★ a) JW2000,	\star b) YN2005,	\star c) this work

Table 1. Model dependence of Trojan total populations.

More Trojans in L4 swarm

SDSS also found the population asymmetry. L4/L5=1.6 (D>10km) (Szabo et al. 2007)

What is the meaning of the depletion of small L4 and the population asymmetry between L4 and L5 ?

- Three-body dynamics tells us that there is no asymmetry in the orbital stability between L4 and L5 swarms.
- Theorists suggests that
 - 1. Gas drag (proto-planetary nebula) makes much survivors in L5 for small JT.(Peale 1993, Murray 1994, Marzari & Scholl 1998)
 - 2. Planetary migrations makes the orbit of L5 objects unstable. (Gomes 1998)

③ Irregular ④ Kuiper belt satellites survey objects survey

The Hawaii Irregular Satellites Survey (HISS)

Aim : The exploration and characterization of the irregular satellites of the planets

HISS has discovered 63 irregular satellites.

A deep sky survey of EKBOs with an improved shift-and-add method. Yamamoto, N., Kinoshita, D., Fuse, T., Watanabe, J. and Kawabata, K. accepted to PASJ.

14 KBOs were detected with m_R~26 mag.
The surveyed area was 0.4 deg².

Pan-STARRS

- Pan-STARRS is a survey system which consists of four individual telescopes, each with a 1.8 meter diameter mirror, they observe the same region of sky simultaneously.
- Its main purpose is searching for potential killer asteroids.
- Pan-STARRS will cover 6,000 deg² per night. The whole available sky as seen from Hawaii will be observed 3 times during the dark time in each lunar cycle.
- Pan-STARRS reaches a limiting magnitude of 24.
- Pan-STARRS will detect moving objects and then determine their orbits almost automatically.

PS1 Haleakala in Hawaii

What can Hyper SuprimeCam do?

Based on Yamamoto et al.(2008),

Detection limit of TNOs ~26 mag

Sensitivity not different from SC

≻FOV: 1.77 deg²

- Expected number : 62 TNOs per shot
- Detectable size of TNOs (at 40 AU) : D~67km (cf.Pan-STARRS can_detect TNOs down to D~170km)
- New detection method Yanagisawa et al. (2004)
 We can reach 2 mag deeper → ~ 28 mag
 Detectable size : 27km

Since smaller objects are important for studying collisional evolutions, it is worth obtaining the size distribution of TNOs with different size range from Pan-STARRS.

My proposal for HSC

Do TNOs survey and get the size distribution of smaller TNOs.

- Because smaller objects are an important key for studying collisional evolutions as I showed you examples of MBAs and JTs.
- Only larger telescope can reach such size range.
- This will be the only way for the Hyper Suprime-Cam to be scientifically significant during the era of Pan-STARRS for studies of the small solar system bodies.
- If the New Horizon take images of Pluto, we will be able to compare the size distributions between Pluto's crater and TNOs. It will reveal the unexplored TNOs world.