
Suprime-Cam Data Reduction Textbook
with SDFRED2

2014 Subaru Winter School at KASI

February 25–27, 2014

! Preliminary draft !

Foreword

This textbook describes a typical procedure using the SDFRED2 software package to
reduce optical imaging data taken with the Subaru Prime Focus Camera (Suprime-Cam)
mounted on Subaru Telescope. SDFRED2 was developed based on SDFRED1 (formerly
SDFRED), which was originally developed by Drs. M. Ouchi and M. Yagi for reducing
Suprime-Cam data after the installation of the new CCD chips in July 2008. The copyright
for SDFRED2 software belongs to Masami Ouchi. You may freely copy and distribute
SDFRED2, but the paper written by the author (Ouchi et al., 2004, ApJ, 611, 660) should
be cited in any scientific paper based on data reduced with SDFRED2.

This document is a re-edited version of the SDFRED2 manual1 written by Drs. F.
Nakata. and R. S. Furuya.

T. Terai (Subaru Support Astronomer)
E-mail : tsuyoshi.terai“at”nao.ac.jp

Suprime-Cam’s focal plain

The cover image — Composite tricolor (B, R, IA651) images of NGC2403 taken on
October 13, 2005 (http://subarutelescope.org/Gallery/pressrelease.html).

1http://www.naoj.org/Observing/Instruments/SCam/sdfred/v2.0/sdfred2 2p1ae.pdf

1

Contents

1 Introduction 3

2 Getting Started 3
2.1 Computer Hardware and Operating System Requirements 3
2.2 Getting the SDFRED2 Package . 3
2.3 Other Software Requirements . 4
2.4 Installation . 4

2.4.1 Uncompressing the software package 4
2.4.2 Compilation . 4
2.4.3 Adding the directory to the PATH 4
2.4.4 Setting environmental variables . 5
2.4.5 Other settings . 6

2.5 Preparation of Data . 6

3 Data Reduction: Overview 9
3.1 A Typical Procedure . 9

4 Reducing Target Object Data 10
4.1 Initial Data Inspection and Renaming of Data Frames (Step 1) 10
4.2 Subtraction Overscan and Bias (Step 2) . 12
4.3 Making Flat Field Frames (Step 3) . 13
4.4 Flat Fielding (Step 4) . 14
4.5 Distortion Correction and Atmospheric Dispersion Correction (Step 5) . . . 15
4.6 Measurement of PSF sizes (Step 6) . 16
4.7 Equalize the PSF Size (Step 7) . 20
4.8 Subtracting the Sky Background (Step 8) 21
4.9 Masking the AG Shade (Step 9) . 22
4.10 Masking Bad Pixels (Step 10) . 22
4.11 Estimating Alignment and Scaling (Step 11) 26
4.12 Combining (Step 12) . 28

5 Reducing Standard Object Data 30
5.1 Renaming (Step 1S) . 30
5.2 Subtraction Overscan and Bias (Step 2S) 31
5.3 Flat Fielding (Step 3S) . 31
5.4 Distortion Correction and Atmospheric Dispersion Correction (Step 4S) . . 32
5.5 Correction of Relative Flux Scale Among Chips (Step 5S) 32

A Special Note for Some Suprime-Cam Data 33

2

1 Introduction

SDFRED2, the Suprime-Cam Deep Field REDuction package 2, allows users to reduce
data taken with Subaru Prime Focus Camera (Suprime-Cam) which is a mosaic CCD
camera with ten 2048 × 4096-pixels CCDs. SDFRED2 allows the immense data output
from Suprime-Cam to be reduced semi-automatically, or even fully automatically, using
standard parameters. The resulting reduced images are then ready for scientific analysis.

SDFRED2 is aimed for photometry of deep-field or blank-field imaging. Therefore,
SDFRED2 may not be able to properly reduce images that contain object(s) spread over
a significant portion of a chip. Moreover, we have not performed any quantitative tests
for shape measurements to images produced by SDFRED2, such as those for weak lensing
analysis. Special procedures and cautions for reducing such data will be described in each
section.

SDFRED2 is designed to reduce data taken as of 2008 July 21.

All the data taken on and before 2008 July 20

MUST be reduced using SDFRED1.

Suprime-Cam was largely upgraded in July 2008, including CCD replacement and
modification of the file format. Special cautions is indicated for reducing some data, as
described in Appendix A. Check there to see if this applies to your data.

2 Getting Started

2.1 Computer Hardware and Operating System Requirements

SDFRED2 requires a UNIX-based computer equipped with 256MB or more of memory.
Requirements for storage space depend on the quantity of data, but typically you need
several GB to several hundred GB (20 GB will sufficient to reduce the training data set).

The SDFRED2 software has been developed and tested on Linux machines of CPU
type X86 64, kernel version 2.6.18–194.17.1.el5, glibc: version 2.5 and gcc version of 4.1.2.
as of 2011 January 14.

2.2 Getting the SDFRED2 Package

The latest version of the package can be obtained from
http://subarutelescope.org/Observing/Instruments/SCam/sdfred/sdfred2.html.en,
and we recommend that you visit this web page from time to time for updated information2.

2A summary of possible problems in Suprime-Cam data is given in the Subaru Mitaka Okayama Kiso
Archive system (SMOKA) web page (http://smoka.nao.ac.jp/about/subaru.jsp). The web page for the
notice of the data before June 2008 (http://smoka.nao.ac.jp/help/help supdetailNEW.jsp) may also help

3

2.3 Other Software Requirements

In addition to SDFRED2, we recommend the following software packages. Please note
that the first two are “must-have” packages; the last one is optional:

• Basic software packages: C compiler, Perl, csh, sh/bash

• SExtractor. Find at http://www.astromatic.net/software/sextractor (Bertin
& Arnouts 1996, A&AS, 117, 393)

• IRAF. Find at http://iraf.nao.ac.jp/ or http://iraf.net/, this is not neces-
sarily required for SDFRED2, but is pretty handy to have. The latest version of
SFRED2 (December 27, 2010) has been tested with version IRAF 2.14.1.

2.4 Installation

2.4.1 Uncompressing the software package

Uncompress the download package by,! "
$ tar xvzf sdfred20130924_mf2.tar.gz

or

$ gunzip -c sdfred20130924_mf2.tar.gz | tar xvf -# $

2.4.2 Compilation

Go into (cd) the sdfred20130924 mf2 directory and build the software as follows.! "
$ cd sdfred20130924_mf2/

$./configure

$ make all# $
The programs are now installed into sdfred20130924 mf2/bin/.

2.4.3 Adding the directory to the PATH

Use an editor to add the sdfred20130924 mf2/bin directory (executables directory) to
your PATH environment in your shell configuration file. You should modify the path to
work with your environment.

bash users: Edit ∼/.bashrc and ∼/.bash profile as follows;

you to get a hint for resolving your questions.

4

! "
Example:

$ emacs ~/.bashrc

$ emacs ~/.bash_profile# $! "
PATH=[path to sdfred20130924_mf2]/sdfred20130924_mf2/bin:$PATH

export PATH# $
∼/.bashrc is used when a new terminal is open, ∼/.bash profile is used when you log
into the computer. Therefore, you need to modify both files. After the files are updated,
adjust the new setting to the current environment. This procedure is required only when
you change the shell configuration files.! "

$ source ~/.bashrc# $
csh/tcsh users: Edit ∼/.cshrc to add the directory where SDFRED2 binaries are

installed (executables directory) as follows;! "
Example:

% emacs ~/.cshrc

% rehash# $! "
$ set path=([path to sdfred20130924_mf2]/sdfred20130924_mf2/bin

$path)# $

2.4.4 Setting environmental variables

LANG, and LC ALL should be set as “C”, so that shell scripts and Perl scripts work
correctly.

bash users: Again, edit ∼/.bashrc and ∼/.bash profile as follows;! "
Example:

$ emacs ~/.bashrc

$ emacs ~/.bash_profile# $
Add the following two lines.! "

export LANG=C

export LC_ALL=C# $
and reflect the setting to the current session.

5

! "
$ source ~/.bashrc# $

csh/tcsh users: Again, edit ∼/.cshrc as follows;! "
Example:

% emacs ~/.cshrc# $
Add the following two lines.! "

setenv LANG=C

setenv LC_ALL=C# $
and reflect the setting to the current session.! "

% source ~/.cshrc# $

2.4.5 Other settings

If you prefer to use IRAF, don’t forget to execute mkiraf in your “work directory”.
Additional settings may be required, depending on your computer environment. When
you are finished with the settings, make sure your environment is as follows! "

Example:

$ env

$ which namechange.csh# $
In env command result, check LANG, and LC ALL environment. Make sure the “which”
command can find the directory you have installed. Once you have successfully finished
the software preparation, you do not have to take these steps again.

2.5 Preparation of Data

Before starting a reduction, you need to sort data files into directories. SDFRED2 requires
that all input files must be in the “current” directory. If you want to process some files in
a different directory, the files should be recognized as if they are in the “current” directory,
by making symbolic links, or by another way.

Sample Data A sample dataset is available at
http://subarutelescope.org/Observing/Instruments/SCam/sdfred/data/

spcam training data fdccd 1.tar.gz (590MB)
http://subarutelescope.org/Observing/Instruments/SCam/sdfred/data/

spcam training data fdccd 2.tar.gz (570MB)

6

Notice that both the data sets must be downloaded.
We have checked that the software works well for this dataset. If you encounter any

problem(s) during regular data reduction, we suggest you diagnose it using this well-tested
sample data. The specific examples given in this manual refer to this sample dataset.! "

Example: extracting sample data

$ tar xvzf spcam_training_data_fdccd_1.tar.gz

$ tar xvzf spcam_training_data_fdccd_2.tar.gz# $
After the data extraction, check the images. Which are the object frames? Which can

be used as flat frames? Which are the standard star frames?
Moreover, inspect images by eye using saoimage-ds9 or your favorite FITS viewer.

This is a good starting point to check for such issues as whether there are any files
(i.e. exposures) showing distorted/elongated stars, and allows you to eliminate bad
data. SUPA010998*.fits, and SUPA010999*.fits are the object frames (target object),
SUPA0109971*.fits are the standard frames, and SUPA01102*.fits are dome-flat frames
in the sample dataset.

In this version (Ver.2.0), both the data sets are assumed to be reduced/analyzed
in three subdirectories (object/ standard/ flat/) which are in the same directory as
spcam training data fdccd.

---(work directory root) - spcam_training_data_fdccd/

- object/

- standard/

- flat/

An example of making symbolic links:! "
$ mkdir object standard flat# $

The result of using ls is;! "
$ ls -1

object

spcam_training_data_fdccd

spcam_training_data_fdccd_1.tar.gz

spcam_training_data_fdccd_2.tar.gz

standard# $
Notice that the option of “ls -1” is “minus one”.
Then link object frames into object/ directory

7

! "
$ cd object/

$ ln -s ../spcam_training_data_fdccd/SUPA010998*.fits .

$ ln -s ../spcam_training_data_fdccd/SUPA010999*.fits .# $
Copy blank map data! "
$ cp ../spcam_training_data_fdccd/blankmap* .

$ cp ../spcam_training_data_fdccd/lblank.txt .# $
Link standard object frames into standard/ directory! "
$ cd ../standard/

$ ln -s ../spcam_training_data_fdccd/SUPA0109971*.fits .# $
Link dome flat frames into flat/ directory! "
$ cd ../flat/

$ ln -s ../spcam_training_data_fdccd/SUPA011002*.fits .# $
Check that 10 FITS files are in standard/ directory, 30 FITS files are in flat/

directory, and 50 FITS files and two blankmaps are in object/ directory. In this textbook,
we assume that readers will work on making flat frames, reducing the scientific targets,
and reducing standard stars in each subdirectory created in above.

Retrieval from SMOKA All data obtained with the Subaru Telescope can be retrieved
through the archive system, SMOKA (http://smoka.nao.ac.jp), after the 18-months of
the proprietary period has passed. After getting the desired data sets, we suggest moving
data of the target object and that of the standard object into separate directories. Check
that all the observations catalogued in a directory were taken with the same filter (e.g
V -band), and are the same data type (object/standard).

8

3 Data Reduction: Overview

3.1 A Typical Procedure

In this subsection, we provide an overview of data reduction using SDFRED2. The typical
procedure for reducing target object frames and for standard object frames, respectively,
is summarized in Tables 1 and 2, and details are described in §4 and §5.

Each of the processes applies to a different subset of data frames. The basic data flow
consists of making lists of these various subsets, and then providing these lists to various
programs within the SDFRED2 package. Each step produces a new set of images or data
files. The naming convention for the various new files are in parentheses after each step
in the list above.

To save disk space, you can delete files after they have been used in the next step
(except ∗.mos and ∗mflats∗.fits, since they are also used in the standard object reduc-
tion). ɹUsers are advised to keep the H∗.fits (renamed), fTo RH∗.fits (flat fielded),
and AspgfTo RH∗.fits (AG probe masked) files, since you never know when you might
need to re-reduce these data sets. Note that other temporary files (tmp∗; ∗.fits) are also
produced during the reduction processes. These can be removed.

All the input files used in each step must exist under the current directory. If you
want to process any files that aren’t in the current directory, you have to tell the program
where they are located. For example, make symbolic links to them, like! "

% ln -s [path to the data directory]/*.fits .# $

Table 1: Outline of Reducing Target Object Frames

Step Purpose Command Files Generated

(1) Renaming namechange.csh H∗.fits
(2) Overscan subtraction overscansub.csh To RH∗.fits
(3) Making flat frames mask mkflat HA.csh ∗mflats∗.fits
(4) Flat fielding ffield.csh fTo RH∗.fits
(5) Distortion correction distcorr.csh gfTo RH∗.fits

and atmospheric
dispersion correction

(6) PSF size measurement fwhmpsf batch.csh —
(7) PSF size equalization psfmatch batch.csh pgfTo RH∗.fits
(8) Sky subtraction skysb.csh spgfTo RH∗.fits
(9) Masking out AG probe mask AGX.csh AspgfTo RH∗.fits
(10) Masking out bad regions blank.csh, bAspgfTo RH∗.fits
(11) Alignment makemos.csh ∗.mos
(12) Coadding imcio2a Final Image

9

Table 2: Outline of Reducing Standard Object Data

Step Purpose Command Files Generated

(1S) Renaming namechange.csh H∗.fits
(2S) Overscan subtraction overscansub.csh To RH∗.fits
(3S) Flat fielding ffield.csh fTo RH∗.fits
(4S) Distortion correction and distcorr.csh gfTo RH∗.fits

atmospheric dispersion
correction

(5S) Relative gain correction ---

4 Reducing Target Object Data

4.1 Initial Data Inspection and Renaming of Data Frames (Step 1)

!"!

$ namechange.csh [raw fits file list]

raw fits file list = names of raw data files

Before reducing your data, rename the data files using information such as the date of
observations, exposure, and component CCD. A filename such as SUPA... thus becomes
H[Date][type][ID] [chipname].fits, where the date, YYMMDD, is one day prior to DATE-
OBS (UT), and corresponds to Hawaiian Standard Time (HST) of the first half of the
night. ID is the frame serial number of the observation day of each type (bias, dark,
object). It should be noted that both target object(s) and standard star(s) have the same
ID of “object”.! "

Example:

$ cd object/# $
enters the directory of object frames! "

$ ls -1 SUPA*.fits > namechange.lis

$ namechange.csh namechange.lis# $
The namechange.lis should be like that

10

! "
$ cat namechange.lis

SUPA01099880.fits

SUPA01099881.fits

SUPA01099882.fits

...# $
Also rename flat frame data as! "

% cd ../flat

% ls -1 SUPA*.fits > namechange.lis

% namechange.csh namechange.lis# $
After the routine executes, your file names with SUPA ... should be changed as follows,
under the /object directory
H090523object038 chihiro.fits

H090523object038 clarisse.fits

H090523object038 fio.fits

...
and, under the /flat directory
H090523object077 chihiro.fits

H090523object077 clarisse.fits

H090523object077 fio.fits

...
If you make symbolic links to the files in a separate directory, they still point to SUPA∗∗∗,
but their names show up as H090523object038 chihiro.fits. That is okay.

Note that each CCD in Suprime-Cam has a name:

[AG probe location]

6 7 2 1 0

chihiro clarisse fio kiki nausicaa

8 9 5 4 3

ponyo san satsuki sheeta sophie

Notice that if you defined an alias of “ls” as “ls -F”, the command of “ls -1

SUPA∗.fits > namechange.lis” will add @marks to the end of file names. Note that
this does not happen if you use the command “cat namechange.lis”.

11

4.2 Subtraction Overscan and Bias (Step 2)

The script overscansub.csh issues a command that subtracts the median value of the
overscan region in each line, and trims the overscan region from the frame. Bias will
be subtracted by assuming that the bias value is equal to that of the overscan. First,
the script subtracts the median of the serial overscanned regions located at the right- or
left-edges of the CCDs from each column of the pixel array. Second, the bias subtraction
will be completed by subtracting medians for the individual parallel overscanned regions
that are located at the top- or bottomedges of the CCDs.

!"!

$ overscansub.csh [overscansub.lis]

overscansub.lis = list of raw data files

Subtracting Overscan The Suprime-Cam CCDs typically have an overscan level of
about 100–300 ADU.

Since the CCDs in Suprime-Cam have very little bias pattern, our experience suggests
that subtracting overscan should suffice for many cases.! "

Example:

$ ls -1 H*.fits > overscansub.lis

$ overscansub.csh overscansub.lis# $
Makes a list file of the images to be used for the analysis.! "

% cd ../object

% ls -1 H090*.fits > overscansub.lis# $
Executes the “overscansub.csh” script.! "

% overscansub.csh overscansub.lis# $
Subtracts bias from the flat data as well by the following:! "

% cd ../flat

% ls -1 H090*.fits > overscansub.lis

% overscansub.csh overscansub.lis# $
After the execution, the overscan and bias subtracted images should be as follows,

To_RH090523object038_chihiro.fits

To_RH090523object038_clarisse.fits

To_RH090523object038_fio.fits

...

12

Checkpoints

• Compare the count statistics (e.g., average and/or median) for any regions where
no objects are detected (the background) between the original frames and overscan
subtracted image(s). The latter should be approximately 100–300 ADU smaller
than the original. Note that the counts to be subtracted may be different in the
individual CCDs and/or pixels.

• Check that the sizes of the output images (i.e., overscan-subtracted) are smaller
than those of the input files. This can be checked with e.g., task imhead in IRAF
by cl> imhead H∗.fits.

4.3 Making Flat Field Frames (Step 3)

!"!

$ mask_mkflat_HA.csh [mkflat.lis] [base name] [lower value]

[upper value]

mkflat.lis = list of files to use to make flats

base name = basename for the flats

lower value = minimum value to accept (0.4 is recommended)

upper value = maximum value to accept (1.3 is recommended)

The script mask mkflat HA.csh creates a flat from files with objects. The flat file is used
to correct the difference in sensitivities between pixels in a frame. Areas vignetted by
the auto-guider (AG) probe are masked out, normalized and a median of all such areas
is taken.

In general, there are three basic types of flats: object flats (blank fields), twilight flats,
and dome flats. Object flats usually give the best result. In fact, the target frames can
be used to produce flats as long as there are no large objects that extend (spread) several
hundred pixels in the frames. In the specific case of the training data, we are dealing with
the relatively nearby galaxy cluster, Abell 1689, where several bright objects exist at the
center of the cluster. We do not suggest making flat frame(s) from these particular data.
In this case, we suggest using dome-flat data. When working with this data, make a flat
frame under the /flat directory and use it for the analysis of the standard stars as well.! "

Example:

$ cd ../flat

$ ls -1 To_RH090*.fits > mkflat.lis

$ mask_mkflat_HA.csh mkflat.lis dome 0.4 1.3# $
The first command is to move to the directory where you stored the data. This is an

13

example of making a sky flat by combining the object frames. After running the script,
there should be flat files for the 10 CCDs.

dome_mflat_chihiro.fits

dome_mflat_clarisse.fits

...

The mflat files should have values around unity and should have a smooth pattern without
much local structure. The U -band data and any bands redward of z will have more
structure than other bands. However, any local variations should be continuous. If there
are abrupt changes in the flat values, consider creating another flat after eliminating
(possible) bad exposures. Note that the value of −32768 is given for any blanked pixels
by SDFRED2, and is not an error. However, if you identify such −32768 values over
a large area or/and many pixels, the program may have failed in flat fielding. In this
case, we strongly suggest checking the input parameters such as [lower value] and/or
[upper value].

Note 1: in principle, a flat can be produced with a minimum of three exposures.
However, the smaller the number of frames used, the larger the noise and residual effects
of objects in the frame. We recommend using at least six frames, ideally over 20 frames,
to produce a sensible flat — especially if you attempt to make it from sky frames.

Note 2: keep in mind that users should not mix the different types of flat exposures
to make a flat frame. This is because the background illuminations have intrinsically
different slopes. For example, SDFRED2 may produce flats with discontinuous stripes
when applied to frames with different illumination patterns. This is due to the algorithm
used in SDFRED2.

Note 3: the SDFRED2 command uses a parameter file to mask out known bad columns
and hot pixels.

4.4 Flat Fielding (Step 4)

!"!

$ ffield.csh [ffield_mf.lis] [ffield_im.lis]

ffield_mf.lis = list of flats to be used

ffield_im.lis = list of (overscan subtracted) files to be

flat fielded

This command corrects pixel-to-pixel variation in sensitivity, and the effect of vignetting
of the telescope optics.

14

! "
Example:

$ ls -1 dome_mflat*.fits > ffield_mf.lis

$ ls -1 To_*.fits > ffield_im.lis

$ ffield.csh ffield_mf.lis ffield_im.lis# $
Takes you to the directory where you stored your data.! "

% cd ../object# $
Links the flat frame made at the Step 3 to the object directory,! "

% ln -s ../flat/dome_mflat*.fits .# $
Make a list file for the flat frames produced in the §4.3.! "

% ls -1 dome_mflat*.fits > ffield_mf.lis# $
Make a list file for the images to be applied the flat fielding.! "

% ls -1 To_RH090*.fits > ffield_im.lis# $
Executes ffield.csh.! "

% ffield.csh ffield_mf.lis ffield_im.lis# $
After flat fielding, the background in each file should be almost flat. The circular illu-
mination pattern seen in the raw data at the edge of the focal plane (chihiro, nausicca,
ponyo, and sophie) should have disappeared. Check to see if there is a low-level (several
percent of variation) illumination pattern.

4.5 Distortion Correction and Atmospheric Dispersion Correc-

tion (Step 5)
!"!

$ distcorr.csh [distcorr.lis]

distcorr.lis = list of (flat fielded) files to be corrected

The script distcorr.csh corrects the field distortion due to telescope optics and the dif-
ferential atmospheric dispersion. The input frames are assumed to be flat-fielded images.
The corrections are based on the airmass and other values recorded in the FITS header.

15

! "
Example:

$ ls -1 fTo_RH030*.fits > distcorr.lis

$ distcorr.csh distcorr.lis# $
Although the amount of distortion correction should be a function of the wavelength,
we adopt measurements with the MIT CCD (which had been used till June 2008) at
the R-band for SDFRED2. Please note that SDFRED2 does not check/optimize such
parameters for the data taken as of July 2008 using the newly installed CCDs (FDCCD).

4.6 Measurement of PSF sizes (Step 6)
!"!

$ fwhmpsf_batch.csh [fwhmpsf_batch.lis] [max number of objects]

[min peak flux] [max peak flux] [min FWHM] [max FWHM]

fwhmpsf_batch.lis = list of images to check PSF

max number of objects = the number of stars to use to measure

the PSF in each image

min peak flux = minimum peak flux of stars to use

max peak flux = maximum peak flux of stars to use

min FWHM = minimum FWHM of stars to use

max FWHM = maximum FWHM of stars to use

Before coadding, equalization of the PSF is required. The script fwhmpsf batch.csh is
used to determine an appropriate target PSF for the images. The script measures the
FWHM of the point-like sources (stellar objects) to obtain PSF sizes in several images,
and outputs the results to the terminal, exposure by exposure, as shown below.! "

Example:

$ ls -1 gfTo_RH090*.fits > fwhmpsf_batch.lis

$ fwhmpsf_batch.csh fwhmpsf_batch.lis 50 2000 40000 2.0 7.0# $
The command produces output like:

gfTo_RH090523object038_chihiro.fits 4.10 1 5 12 0 0

gfTo_RH090523object038_clarisse.fits 4.00 0 3 16 18 0

gfTo_RH090523object038_fio.fits 4.10 1 11 21 0 0

...

3.5 |****

3.6 |*

3.7 |******

3.8 |**

16

3.9 |*

4.0 |******

4.1 |*******

4.2 |******

4.3 |*

To judge whether or not the PSF matching has ended successfully, you should check
the following two points:

(1) Checking PSF sizes in each frame — Check the results shown by ascii text as
follows:
gfTo RH090523object038 chihiro.fits 4.10 1 5 12 0 0. This gives results of
the 20 PSF measurement for each CCD chip at a single exposure. Individual columns
show the following information:

1st : Name of image

2nd : Mean FWHM of PSF after PSF matching in pixel unit

3rd : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF − 0.2 pixel)

4th : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF − 0.1 pixel)

5th : Number of objects having PSF sizes within 0.1 pixels centered on mean PSF

6th : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF + 0.1 pixel)

7th : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF + 0.2 pixel)

Make sure that the number of objects falling into the bin including the mean, the
column 5, shows the largest number of the distribution3. The bins of ±0.1 pixel,
the column 4 and column 6, should be the next largest ones.

(2) Checking the overall results of the PSF measurements —Next, check the his-
togram presented by ∗ marks. This histogram summarizes your PSF measurements
over the ten CCDs and all the exposures. In this particular example, one of the
asterisks at PSF = 4.1 is from “gfTo RH090523object038 chihiro.fits 4.10 1

5 12 0 0”. Using all the information above, you need to select an appropriate PSF
size, and supply it at Step 7 (§4.7). Since selecting a PSF size strongly depends on
your scientific goals, verify the results carefully. If needed, identify any exposure(s)
whose PSF sizes are degraded, and exclude such exposure(s).

If you want to check the results with other software, the IRAF task “imexam” is handy
for checking PSFs (display image; cl> imexam image.fits; place cursor above a star;
type “r” or “a” to measure FWHM). Keep in mind that each software routine may be
using different fitting algorithms and may return different FWHM values. SDFRED2
adopts FWHM values generated by SExtractor, which are different from those produced

3In general, one can expect that the mean value of PSF sizes measured in an exposure should peak in
its histogram, if one measures PSFs using point-like sources only.

17

by IRAF’s imexam task. The purpose of checking with IRAF is not to find an exact match
in FWHM values, but to confirm that the output images have comparable PSF sizes after
the matching.

!"!

$ fwhmpsf.csh [image file] [max number of objects]

[min peak flux] [max peak flux] [min FWHM] [max FWHM]

image file = the image to check PSF

max number of objects = the number of stars to use to measure

the PSF in each image

min peak flux = minimum peak flux of stars to use

max peak flux = maximum peak flux of stars to use

min FWHM = minimum FWHM of stars to use

max FWHM = maximum FWHM of stars to use

Note 1: Use the script fwhmpsf.csh to find the PSF of a single image. The parameters
are the same as for fwhmpsf batch.csh. Just supply the name of an image rather than
a list of images.! "

Example:

$ fwhmpsf.csh gfTo_RH090523object038_chihiro.fits 50 2000 40000

2.0 7.0# $
This produces output like:

gfTo RH090523object038 chihiro.fits 4.10 1 5 12 0 0

This output indicates that the image gfTo RH090523object038 chihiro.fits has a PSF
FWHM of 4.1 pixels.

18

!"!

$ starselect.csh [image][max number of objects][min peak flux]

[max peak flux][min FWHM][max FWHM][output file]

image = name of image to check

max number of objects = the number of stars to use to measure

the PSF

min peak flux = minimum peak flux of stars to use

max peak flux = maximum peak flux of stars to use

min FWHM = minimum FWHM of stars to use

max FWHM = maximum FWHM of stars to use

output file = name of file with location of selected stars

Note 2: This script is designated to search for the appropriate parameters ([max number

of objects] [min peak flux] [max peak flux] [min FWHM] and [max FWHM]) for se-
lecting stellar objects in an image.! "

$ starselect.csh gfTo_RH090523object038_chihiro.fits 50 2000 \

40000 2.0 7.0 output.reg# $
The script will produce an output file (output.reg) that contains the location of stellar

objects satisfying the given criteria. The output is formatted so that the stellar objects
are plotted with green circles when you plot using saoimage-ds9. If the majority of the
selected objects are “real stellar objects” (stars in many cases), then the parameters are
appropriate for psf match for a given image. If you realize that the quality of the data
varies image by image, determine whether or not a single set of parameters can be applied
for the whole data set. If it cannot, it is better to run psfmatch batch multiple times
using the appropriate criteria for each subset of data. Using saoimage-ds9 is the easiest
way to display an image and overlay the location of the selected stars.! "

$ ds9 gfTo_RH090523object038_chihiro.fits# $
Select “Region”, “Load”, and select output.reg. Then green circles will be overlaid on

the image. If more than half of the objects selected are stellar objects, the parameters
you adopted are appropriate.

Note 3: Three scripts that are used in this step, i.e., fwhmpsf batch.csh, starselect.csh
and psfmatch batch.csh, may not work in crowded fields. In such fields, it may be nec-
essary to estimate the PSF manually.

19

Note 4: The fwhmpsf batch.csh and/or psfmatch batch.csh described in §4.7 may not
work properly for the frames with significant amounts of cosmic ray hits. If this is the case,
we suggest eliminating bad pixels hit by cosmic rays using software designated for this par-
ticular purpose, e.g., L.A.Cosmic (http://www.astro.yale.edu/dokkum/lacosmic/).
We have checked that the IRAF version of L.A.Cosmic has successfully removed such
pixels hit by cosmic rays. If you use this package, apply it to the data immediately after
flat fielding (fTo ∗.fits).

4.7 Equalize the PSF Size (Step 7)
!"!

$ psfmatch_batch.csh [psfmatch_batch.lis] [max number of objects]

[min peak flux] [max peak flux] [min FWHM] [max FWHM]

[target FWHM]

psfmatch_batch.lis = the list of images to match to a single PSF

max number of objects = the number of stars to use to measure

the PSF in each image

min peak flux = minimum peak flux of stars to use

max peak flux = maximum peak flux of stars to use

min FWHM = minimum FWHM of stars to use

max FWHM = maximum FWHM of stars to use

target FWHM = FWHM to smooth all the data to

The script psfmatch batch.csh attempts to match the PSF size of all images to be
combined to a predetermined target FWHM. Images with PSF sizes smaller than the
target (within a small range) are Gaussian smoothed. Other images are simply copied.
The target FWHM should represent the typical PSF size for the exposure, having the
worst (i.e., the largest) PSF size among the exposures to be combined. In the case of
the sample data, we adopt target FWHM = 4.1 as a fiducial value based on the results
obtained in Step 6.! "

Example:

$ ls -1 gfTo_RH090*.fits > psfmatch_batch.lis

$ psfmatch_batch.csh psfmatch_batch.lis 50 2000 40000 2.0 7.0 4.1# $
The command produces output like:
pgfTo_RH090523object038_chihiro.fits 4.10 0 5 15 0 0

pgfTo_RH090523object038_clarisse.fits 4.10 0 2 16 18 0

pgfTo_RH090523object038_fio.fits 4.10 0 0 16 18 0

...

20

PSF | number of images

3.9 |***

4.0 |***

4.1 |******************************

4.2 |************

4.3 |**

The command prints a log of the standard output, with the following columns:
1st : Name of image

2nd : Mean FWHM of PSF after PSF matching in pixel unit

3rd : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF − 0.2 pixel)

4th : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF − 0.1 pixel)

5th : Number of objects having PSF sizes within 0.1 pixels centered on mean PSF

6th : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF + 0.1 pixel)

7th : Number of objects having PSF sizes within 0.1 pixels centered on (mean PSF + 0.2 pixel)

An ASCII histogram following the log illustrates the distribution of mean PSFs.
The appropriate parameter values for psfmatch batch.csh will change depending on

the quality of the data. Different bandpasses, integration times, and weather conditions
will require different parameters.

4.8 Subtracting the Sky Background (Step 8)
!"!

$ skysb.csh [skysb.lis] [sky-mesh]

skysb.lis = list of images to sky subtract

sky-mesh = size of mesh for determining sky values

The script skysb.csh (1) computes a mesh pattern that represents the sky background,
(2) interpolates the pattern, and (3) subtracts it from the image. The script creates a grid
— referred to as “sky-mesh size squares” — on the image. The grid spacing having is half
of the “sky-mesh” size. An appropriate sky-mesh size will be selected for each mesh, and
assigned to the pixel located at the center of the mesh. After rejecting the outliers, the
sky values for other pixels will be given by interpolating bi-linear from the surrounding
meshes. Note that the sky-mesh size must be at least twice the size of the largest object
of interest. This is due to the Nyquist sampling theorem.

21

! "
Example:

$ ls -1 pgfTo_RH090*.fits > skysb.lis

$ skysb.csh skysb.lis 64# $
Once the sky background level is subtracted, the background of an image should be

around zero without a spatial gradient. If there is an extended object(s) spreading over
a large fraction of the image, the algorithm will most likely fail. Subtraction of sky
background in crowded fields requires special data handling and you will need to estimate
the sky background manually.

4.9 Masking the AG Shade (Step 9)
!"!

$ mask_AGX.csh [mask_AGX.lis]

mask_AGX.lis = list of files to mask

The script mask AGX.csh will mask areas vignetted by the AG probe by the value −32768.
The script should only affect the top few hundred rows of the data from chips chihiro,
clarisse, fio, kiki, and nausicaa. Other files are not affected.! "

Example:

$ ls -1 spgfTo_RH090*.fits > mask_AGX.lis

$ mask_AGX.csh mask_AGX.lis# $
Although only half the CCDs are potentially affected by the AG probe, the input file

list should include all the object files so that files with the same naming convention exist
to make list-making for subsequent steps easier. To identify images where a shadow of
the AG probe appears, look for images whose pixels at the top edge have the masking
value of −32768 over more than a hundred pixels. Note that the shadow of the AG probe
does not appear all the time.

4.10 Masking Bad Pixels (Step 10)

Data in some pixels may be corrupted due to defects of detectors and/or other problems
that may have occurred during the observation. Such regions should be consistent across
the exposures (i.e., they are not time variable), and should be masked accordingly. For
instance, we suggest masking the background areas where flattening fails and systemati-
cally deviates from zero. If plenty of exposures cover the observed region, we suggest not
spending much time with this step. This is because outliers will be rejected automat-
ically in Step 12. The SDFRED2 package offers three methods — linear, circular, and

22

rectangular — to specify regions to be masked for eliminating bad pixels. Here, “linear
region” connects the two points (x1, y1) − (x2, y2), extends the line to the edges of the
image, and masks the pixels within “width” from the line. The “circular region” masks
the pixels in a circle. The “rectangular regions” masks rectangular regions aligned to the
pixel coordinates.

!"!

$ line_bank [input image] [x1] [y1] [x2] [y2] [width]

[blank value] [output image]

input image = name of image to mask

x1 = x coordinate of start of line

y1 = y coordinate of start of line

x2 = x coordinate of end of line

y2 = y coordinate of end of line

width = width of line

blank value = mask value (usually -32768)

output image = name of masked image

Linear region The script line bank masks a linear structure such as satellite trails.! "
Example:

$ line_blank AspgfTo_RH090523object038_kiki.fits \

10 3826 1351 8 90 -32768 lAspgfTo_RH090523object038_kiki.fits# $
The example shown creates a mask for a line which crosses (10, 3836) and (1351, 8) and
around 90 pixels wide.! "

Example:

% cat lblank.txt

line_blank AspgfTo_RH090523object038_kiki.fits 10 3836 1351 8 90

-32768

lAspgfTo_RH090523object038_kiki.fits# $
The “line blank” command (above) to AspgfTo RH090523object038 kiki.fitsmasks

a rectangular region with a width of 90 pixels, centered on (X, Y) = (10, 3836), (1351,
8).! "

% bash < lblank.txt# $
After execution, you will find the resultant masked images with the names shown

below.

23

lAspgfTo_RH090523object038_kiki.fits

lAspgfTo_RH090523object038_sheeta.fits

lAspgfTo_RH090523object038_sophie.fits

Check whether or not you masked properly by comparing the input and output images.

!"!

$ circular_blanks [input image] [blanklist] [blank value]

[output image]

input image = name of image to mask

blank list = a text file describing the x and y coordinates,

as well as the radii of the areas to be masked

blank value = mask value (usually -32768)

output image = name of masked image

Circular region The script circular blanks masks circular regions.! "
Example:

$ circular_blanks lAspgfTo_RH090523object038_chihiro.fits \

blanklist -32768 clAspgfTo_RH090523object038_chihiro.fits# $
where blanklist looks like:! "

$ cat blanklist

365 1835 80

1202 3582 100# $
The two lines correspond to a circle of (x, y, r) = (365, 1835, 80) and (x, y, r) = (1202,
3582, 100). Here, we stress that the command (above):
clAspgfTo RH090523object038 chihiro.fits represents an example of how to use it.
In practice, you probably will not need to mask a circular region (likely the case for the
other frames in the training data set).

!"!

$ blank.csh [blank list]

blank list = list of images to be masked

Rectangular regions For each image, xxx.fits, in the blank list the script blank.csh
will look for a file named blankmap xxx in the same directory, and mask rectangular

24

regions specified in the file to −32768. Each line in the file blank xxx should contain the
x and y coordinates of two opposite corners of a rectangular area.

The IRAF routine imexam is useful for getting the coordinates. (cl> imexam; press
“b” at two corners to define a rectangle; the coordinates of the corners will be printed to
the screen in the order of x1 x2 y1 y2.)! "

Example:

$ ls -1 AspgfTo_RH090*.fits > blank.lis

$ ls -1 lAspgfTo_RH090*.fits >> blank.lis# $
Exclude files below from blank.lis.

AspgfTo_RH090523object038_kiki.fits

AspgfTo_RH090523object038_sheeta.fits

AspgfTo_RH090523object038_sophie.fits

AspgfTo_RH090523object039_ponyo.fits

AspgfTo_RH090523object039_san.fits

AspgfTo_RH090523object039_satsuki.fits

AspgfTo_RH090523object039_sheeta.fits

AspgfTo_RH090523object039_sophie.fits

AspgfTo_RH090523object042_sophie.fits

There are lAspgfTo ∗.fits files made by line blank for these data.! "
$ blank.csh blank.lis# $

Mask files have been included for a subset of images

blankmap_lAspgfTo_RH090523object038_sheeta

blankmap_lAspgfTo_RH090523object038_sophie

These files have entries like:

$ cat blankmap_lAspgfTo_RH090523object038_sheeta

1965 2030 2376 2552

The script masks the regions specified in the corresponding blankmap xxx file. If the
blankmap xxx file does not exist, the script will simply copy the image file to the output.

25

4.11 Estimating Alignment and Scaling (Step 11)
!"!

$ makemos.csh [makemos.lis] [starsel nskysigma] [starsel npix]

[starsel peakmin] [starsel peakmax]

[aperture phot radius in pix] [output mos-file name]

makemos.lis = list of images to align

starsel nskysigma = signal to noise ratio of objects per pixel

to use for alignment

starsel npix = number of continuous pixels with [starsel

nskysigma] to identify object

starsel peakmin = minimum value of peak pixel of alignment stars

starsel peakmax = maximum value of peak pixel of alignment stars

aperture phot radius in pix = radius to use for aperture

photometry

output mos-file name = file to record alignment and scaling

Signal-to-noise ratio (S/N) can be improved by combining multiple images (if you have
them) to produce a final image. The script makemos.csh determines the shifts, rotations,
and flux scales of different images. The script identifies stellar objects in each image and
determines the shifts, rotations, and flux scale from objects common to multiple images.
The first image in the list is used as the reference image.! "

Example:

% ls -1 bAspgfTo_RH090*.fits > makemos.lis

% ls -1 blAspgfTo_RH090*.fits >> makemos.lis

$ makemos.csh makemos.lis 5 30 1000 40000 10 all.mos > makemos.log# $
The script will print to the standard output the number of stellar objects selected for

alignment and scaling.

...

selected stars = 119

...

The script is likely to fail if the number of selected stars per image is either small (<
30) or very large (> 1000). Optimizing key parameters such as [starsel nskysigma],
[starsel npix], [starsel peakmin], and [starsel peakmax] will help the script to
select appropriate stellar objects.

The best parameters for selecting objects in this step may be different from PSF
measurement for many cases. This is because a different underlying algorithm is employed

26

in order to find a wider range of objects to determine relative positions and flux scaling
that work over a range of fluxes.! "

Example:

$ cat all.mos

bAspgfTo_RH090523object038_chihiro.fits 0.000000 0.000000 0.000000

1.000000

bAspgfTo_RH090523object038_clarisse.fits 2075.014139 1.531898

-0.000102 1.017556

bAspgfTo_RH090523object038_fio.fits 4184.051440 1.028001 -0.000054

1.079106

...# $
As shown above, you will see five parameters (i.e., columns) in the output ∗.mos file:

the name of the image, the x offset, the y offset, the counterclockwise rotation (radian),
and flux ratio. If each result has four output parameters followed by the image name,
the alignment or/and scaling have finished successfully. If the alignment and scaling
have failed, the output file may not be produced at all, miss some parameters, or have
unreasonable values.

We – the SDFRED support team – have been making continuous efforts to provide
users more sophisticated method(s) that examines all.mos. We wish to share the follow-
ing tips:

1. Inspecting the final image created in Step 12 must be done. However, bear in mind
that it is not the ultimate method. If the number of exposures is large, it is difficult
to detect some small defects by visual inspection in the final image.

2. It is always a good idea to make a plot of the second vs. third columns stored in
all.mos. The result shows the relative position of each shot, and represents the
dither pattern as well as the chip positions. If there is a large leap in value, the
matching has failed.

3. The distances between CCD chips should be almost constant (a slight difference
may exist due to atmospheric dispersion between chips). If the distances between
any arbitrarily chosen chip pairs for the same exposure (e.g., between chihiro and
sheeta) has changed significantly across exposures, the data of the corresponding
exposure on another chip would be incorrect.

4. The fifth column of ∗.mos (relative flux) of a chip should be almost proportional to
the exposure time, if the sky condition is photometric (it is affected by atmospheric
extinction (airmass), however).

In the next step, each image is converted with the data in all.mos as follows;

x_mos = cos(theta) x - sin(theta) y + x_local

y_mos = sin(theta) x + cos(theta) y + y_local

27

Note 1: If you don’t need to combine, you can skip Steps 11 and 12, and end the
reduction. If you intend to combine images toward more than two fields, make sure that
these data have been taken contiguously. If this is not the case, Step 11 will fail.

4.12 Combining (Step 12)
!"!

$ imcio2a [parameters] [mos file] [result image]

parameters = parameters that define the combining algorithm usually

"-dist_clip -nline=20 -dtype=FITSFLOAT -pixignr=-32768"

mos file = file containing the alignment and scaling values

(output from makemos.csh)

result image = the name of the final image

imcio2a combines the images into a final combined image using the output from makemos.csh

(∗.mos). Using the parameter -dist clip will combine the images using a clipped mean
algorithm.! "

Example:

$ imcio2a -dist_clip -nline=20 -dtype=FITSFLOAT -pixignr=-32768 \

all.mos all.fits# $
The parameter -dist clip can be replaced by -dist med to get a weighted median

combined image or -dist add to use a weighted mean pixel values. Note that the header
of the output image is incomplete. Use the first file listed in makemos.lis in the previous
step as a reference header.

Here are the meanings of the typical parameters:

-dist_clip : use a clipped mean algorithm for combining

-nline=20 : set the y direction buffer width to 20

-dtype=FITSFLOAT : make the output data floating point

-pixignr=-32768 : ignore pixels valued -32768

Details and optional parameters of imcio2a can be printed using the command

!"!

$ imcio2a -h

Note 1: We have indicated that the image listed at the very first row of the list file
(makemos.lis) is used as a reference for the coordinates. Even if the World Coordinate

28

System (WCS) of the first image is not TAN, the mosaicked output image is forced to
have TAN. For instance, some images retrieved from SMOKA (http://smoka.nao.ac.jp)
may have WCS of TNX. If this is the case, the WCS in the output image obtained by
this is highly likely incorrect. If you wish to attain highly accurate astrometry, you must
calibrate the WCS of the resulting image.

Note 2: makemos.csh assumes that the users supply images whose WCS is described
by TAN and the positions given in a priori is not so different from what is expected.

Note 3: If you use -dist peak for [parameters] of the imcio2a, each pixel of the output
image will have differences between the maximum and median values (i.e., maximum –
median) of the corresponding pixels of the input images. This option is for checking
moving objects (e.g., minor planets, and comets) a few of which are often found in one
FoV of Suprime-Cam. We suggest using this option for checking the final image. If you
find many bright pixels in specific regions of the final image, the alignment and scaling of
input images (Step11) may fail around regions.

29

5 Reducing Standard Object Data

Steps 1S through 4S describe a typical procedure for reducing standard stars data. Since
the physics behind this is the same as for reducing target objects, you can essentially
repeat the procedure. Don’t forget to work in the standard/ directory. The flat frames
must be the same as those used for the objects. Therefore be sure to copy them from the
object/ directory.

5.1 Renaming (Step 1S)
!"!

$ namechange.csh [raw fits file list]

raw fits file list = names of raw data files

Renaming is done in the standard/ directory.! "
Example:

$ cd standard/# $
takes you to the directory of standard frames,! "

$ ls -1 SUPA*.fits > namechange.lis

$ namechange.csh namechange.lis# $
The namechange.lis should be as follows.! "
$ cat namechange.lis

SUPA01099710.fits

SUPA01099711.fits

SUPA01099712.fits

...# $
The resulting files are renamed as follows:

H090523object021_chihiro.fits

H090523object021_clarisse.fits

H090523object021_fio.fits

...

30

5.2 Subtraction Overscan and Bias (Step 2S)
!"!

$ overscansub.csh [overscansub.lis]

overscansub.lis = list of raw data files

In the standard/ directory, overscan is subtracted from all the data as follows,! "
Example:

$ ls -1 H090*.fits > overscansub.lis

$ overscansub.csh overscansub.lis# $! "
$ cat overscansub.lis

H090523object021_chihiro.fits

H090523object021_clarisse.fits

H090523object021_fio.fits

...# $
and, To RH090523object021 chihiro.fits ... are created.

5.3 Flat Fielding (Step 3S)
!"!

$ ffield.csh [ffiled_mf.lis] [ffield_im.lis]

ffield_mf.lis = list of flats to be used

ffield_im.lis = list of (overscan subtracted) files to be

flat fielded

The flat frames used in this step (ffield mf.lis) must be identical to those used for the
target(s) in order to cancel out uncertainty in the normalization.! "

Example:

$ cp ../object/dome_mflat*.fits .

$ ls -1 dome_mflat*.fits > ffield_mf.lis

$ ls -1 To_RH090*.fits > ffield_im.lis

$ ffield.csh ffield_mf.lis ffield_im.lis# $
and fTo RH090523object021 chihiro.fits ... are created.

31

5.4 Distortion Correction and Atmospheric Dispersion Correc-

tion (Step 4S)
!"!

$ distcorr.csh [distcorr.lis]

distcorr.lis = list of (flat fielded) files to be corrected

The distortion correction is required since it slightly changes the sizes of the pixels, yielding
slightly different flux value(s).! "

Example:

$ ls -1 fTo_RH090*.fits > distcorr.lis

$ distcorr.csh distcorr.lis# $
and gfTo RH090523object021 chihiro.fits ... are created.

5.5 Correction of Relative Flux Scale Among Chips (Step 5S)

Recall that the relative flux “scale” among different CCD chips has not yet been corrected
even after Step 4S. For example, *.mos file produced at the Step 11 is as below.! "

Example:

$ cat all.mos

bAspgfTo_RH090523object038_chihiro.fits 0.000000 0.000000 0.000000

1.000000

bAspgfTo_RH090523object038_clarisse.fits 2075.014139 1.531898

-0.000102 1.0 17556

...

bAspgfTo_RH090523object038_ponyo.fits -0.083782 -4201.238704

-0.000492 0.80 5606

...# $
You will probably notice that the sensitivity of ponyo is about 80% with respect to

chihiro. For instance, a star that has 10,000 ADU in chihiro would have ∼8000 ADU
if it was observed with ponyo. Clearly, such a relative flux scale should be corrected
according to the flux ratio described in the fifth column of the *.mos file. Of course, this
step is not required if the standard star(s) has fallen only onto chihiro. However, because
standard stars are detected in several chips in the case of the sample data, this process is
definitely required. You should divide the data by typical relative flux scale of the chip
to the reference chip, which is chihiro for the sample data. Currently, the script for this
correction is not provided. Users should do this process manually.

32

A Special Note for Some Suprime-Cam Data

We changed out the CCD chips in Suprime-Cam in July 2008. SDFRED2 is designed to
work with data taken with the new CCDs (FDCCD). If you want to reduce data taken
before June 2008, use SDFRED1. In addition, there are known problems in the data taken
as of July 2008, as summarized below. The information below is essentially the same as
that shown in the SMOKA web page (http://smoka.nao.ac.jp/about/subaru.jsp).
Since the webpage may be updated more frequently than this Cookbook, we strongly
suggest checking the web page. Finally, the web page detailing procedures for data taken
before June 2008 (http://smoka.nao.ac.jp/help/help supdetailNEW.jsp) may aid
you in resolving any issues.

Note 1: The data taken between July 29, 2008 and December 3, 2008,

FRAMEIDɿSUPA01000001 - SUPA01055389

are known to have problems in their linearity in the low counts. Their linearity may be
with an accuracy of 2–5 % for < 500 ADU. Therefore, we strongly suggest not using
low-count data taken during this period. Since we changed the threshold voltage for
the readout system in December 2008, this problem is resolved for the data taken as of
December 24, 2008 (on and after SUPA01155570).

Note 2: The data taken on September 17, 2010 in the sequence

FRAMEIDɿSUPA01238890 - SUPA01240459

were not properly read at the left-most channel of the CCD (DET-ID = 9 (san)). Except
for this channel, we have double-checked that all the remaining data were accordingly read.
Since we have optimized the readout voltage for the corresponding channel of “san” in
October 2010, this problem is resolved for the data taken as of October 5, 2008 (on and
after SUPA01240460).

Note 3: As described above, the voltage of the readout system has changed a few times.
Therefore, we strongly suggest using special caution not to mix data that were taken
under different voltage settings when you make a flat frame.

For all the CCDs, do not mix the following:

SUPA01000001 - SUPA01055389

SUPA01155570 -

As for a CCD of DET-ID=9 (san), do not mix the followings

SUPA01155570 - SUPA01238889

SUPA01238890 - SUPA01240459

SUPA01240460 -

33

Note 4: The following data are known to have errors in their FITS headers:

a) FRAMEIDɿSUPA01141740 - SUPA01141759 (two shots)

SUPA01196480 - SUPA01196489 (one shot)

The position information (RA, DEC, RA2000, DEC2000, CRVAL1, CRVAL2, CRPIX1,
CRPIX2) in the above data are wrong. We suspect that the other header information is
also wrong. Due to these errors, SDFRED2 cannot handle these files.

b) FRAMEIDɿSUPA01239571 - SUPA01239630 (six shots)

The counters for these FITS files are wrong: they are shifted by one. The EXP-ID, which
is taken from the last digit of the first FITS file of an exposure set, must be zero. Namely,
they should be renamed as SUPA01239570 − SUPA01239579, which constitutes a set of
exposure data.

34

