Introduction of near-infrared (NIR) spectroscopy

Ken-ichi Tadaki (NAOJ)

Near-infrared in astronomy

- wavelength range of 1-5 um

- observable windows are limited (J, H, K, L', M')

Science case 1 in near-infrared astronomy

- high-redshift galaxies e.g. Ha emission line at z>1, Lya at z>7

Ha emission line in the rest-frame (z=0) -> λ_{rest} = 0.6563 um (optical)

Ha emission line at z=2.35 -> $\lambda_{obs} = \lambda_{rest}(1+z)$ = 2.2 um (near-infrared)

MODS11-0390 [21590.0A:22390.0A][57:61]

Science case 2 in near-infrared astronomy

dust obscured objects
e.g. Galactic center, star-forming regions

created by Ichi Tanaka

Science case 3 in near-infrared astronomy

- cool objects

e.g. brown dwarfs, young gas planet

800

milli-arcseconds

400

0

NIR instruments of Subaru telescope

- Subaru telescope has three NIR instruments.
- MOIRCS is mounted on the Cassegrain focus.

Multi-Object InfraRed Camera and Spectrograph

- MOIRCS has two detecters, providing a FoV of 4'×7'
- imaging mode and spectroscopy mode

Multi-object spectroscopy mode

Multi-object spectroscopy mode

2D spectra and 1D spectra

Sky is bright in near-infrared

 $\label{eq:lambda} \begin{array}{l} \lambda < 2.2 \mu m : \\ OH \mbox{ lines dominate (green line)} \\ \lambda > 2.2 \mu m : \\ \mbox{ thermal radiation from telescope dominate (pink line)} \end{array}$

Reference: lecture note by lwamuro-san (http://www.kusastro.kyoto-u.ac.jp/ iwamuro/LECTURE/OBS/)

- sky emission should be subtracted

A-B sky subtraction

- sky emission is roughly subtracted
- but sky emission is time variable

signal to noise ratio (S/N)

object x t

$\sqrt{(object + sky) \times t + readout noise}$

if sky × t << readout noise S/N \propto 1 / t if sky × t >> readout noise S/N \propto 1 / \sqrt{t} -> background limit

S/N =

Grism	Saturation magnitude				Max exposure	Min BLIP
	15 s	60 s	300 s	600 s	time (s) ⁽²⁾⁽³⁾	time (s)
zJ500-J	9.8	11.3	13.0	13.8	800	300
HK500-H	9.4	10.9	12.9	13.9	600	50
HK500-K	8.4	9.9	11.7	12.5	600	200
R1300-J	6.8	8.3	10.1	10.8	TBD	4200
R1300-H	7.3	8.8	10.6	11.3	2800	300
R1300-K	7.3	8.8	10.5	11.3	2500	500

from MOIRCS website

- integration time should be longer than the background limit

MOIRCS Grisms

from MOIRCS website

Grism name	Operating range [um]	Resolution (0.5" slit)	Dispersion [A/pixel]	Sensitivity (Vega magnitude) [mag/arcsec ²]
zJ500	0.9-1.78 (*3)	700 @ J	5.57	J=19.2
HK500	1.3-2.5 ^(*4)	640 @ H 820 @ Ks	7.72	H=17.8 K=17.6
R1300 ^(*1)	1-2.5 ^(*5)	1300 @ ch1 ~1100 @ ch2 ^(*2)	1.91 @ J 2.61 @ H 3.88 @ K	J=17.8 H=16.7 K=17.1

spectral resolving power: R= λ / $\Delta\lambda$

in the case of the HK500 grism R=820 and λ =22000Å -> spectral resolution $\Delta\lambda$ =22000Å/820~27Å

- use the appropriate grism for your science case
- resolution depends on the slit width

Procedures of data reduction

- 0. raw data
- 1. flat fielding
- 2. Interpolation of cosmic ray and bad pixel
- 3. A-B sky subtraction
- 4. distortion correction
- 5. slit extraction
- 6. wavelength calibration
- 7. residual sky subtraction
- 8. combine frames
- 9. telluric correction and flux calibration

From raw image to reduced image

extract the object information from raw data including noises

raw data= gain(x,y) × (object + sky + cosmicray + bad pixel)

flat fielding (=gain map)
rawdata / gain(x,y) = object + sky + cosmicray + bad pixel

(2). interpolation of cosmicray and bad pixel (1) - cosmicray - bad pixel = object + sky

3. sky subtraction

 \bigcirc - sky = object

1. flat fielding

correct the inequity of sensitivity between detector pixels

rawdata / gain(x,y) = object + sky + cosmicray + bad pixel

2. interpolation of cosmic rays/bad pixel

interpolate the pixel value along spatial direction

1) - cosmicray - bad pixel = object + skynoise

3. A-B sky subratction

9. telluric correction and flux calibration

From raw image to reduced spectra

