
SDFRED
Data Reduction Software for Subaru

Suprime-Cam

Manual Version 1.4

Masami Ouchi
National Astronomical Observatory of Japan/ Space Telescope Science Institute

August 6, 2004 created

Translation by Catherine Ishida
National Astronomical Observatory of Japan

December 12, 2006 revised (Hisanori Furusawa, Yutaka Komiyama,
YAGI,Masafumi & SDFRED support team)

September 25, 2007 revised (Hisanori Furusawa, YAGI,Masafumi & SDFRED
support team)

May 1, 2008 revised (YAGI,Masafumi & SDFRED support team)

September 1, 2008 revised (YAGI,Masafumi & SDFRED support team)

This software manual is valid for reducing data observed before 2008/07/21

Introduction

Suprime-Cam is a mosaic CCD camera with 10 2048x4096 pixels CCDs. SDFRED,
the Suprime-Cam Deep field REDuction package, is a software package for
reducing Suprime-Cam data. SDFRED allows the immense data output from
Suprime-Cam to be reduced semi-automatically, or even fully automatically, using
typical input parameters. The reduced images are ready for scientific analysis.

SDFRED aimed at reducing deep field or blank field images. Images that contain
objects that occupy a significant portion of a chip and/or too crowded regions may
not be reduced properly with this package. The most problematic procedures are
noted in the text.

Copyright

The copyright for SDFRED software belongs to Masami Ouchi who wrote the
package, and to Masafumi Yagi who supplied the basic code and made
improvements. You may freely copy and distribute SDFRED, but the following two
papers should be cited in any scientific paper based on data reduced with
SDFRED:

Yagi et al., 2002, AJ, 123,66

Ouchi et al., 2004, ApJ, 611, 660

How to Obtain SDFRED

The software package is available at:

http://optik2.mtk.nao.ac.jp/subaru_red/SPCAM/

Updates and other information concerning the package will be posted to this web
page.

Other Software Requirements

� SExtractor
http://terapix.iap.fr/rubrique.php?id_rubrique=91
(Bertin & Arnouts 1996, A&AS, 117 393)

The latest SDFRED (20080610) has been tested with version 2.5.0

� IRAF(Not necessary for SDFRED, but useful)
http://iraf.nao.ac.jp/ or_ http://iraf.net/

The latest SDFRED (20080610) has been tested with version 2.12.2

� Other basic software packages:
C compiler, perl, csh, sh/bash

Computer Hardware and Operating System
Requirements

SDFRED requires a UNIX based computer with at least 256MB of memory. The
necessary hard drive space depends on the quantity of data, but several to several
hundred GB is generally required. (To reduce the practice dataset, 10GB is
sufficient.)

The latest software (20080610) has been tested with Linux.

Installation

1. Uncompress the software package in an appropriate
directory.

Download the latest version at the download URL written above.

$ tar xvzf sdfred20080610.tar.gz

or

$ gunzip -c sdfred20080610.tar.gz | tar xvf -

http://optik2.mtk.nao.ac.jp/subaru_red/
http://iraf.net/
http://iraf.nao.ac.jp/
http://terapix.iap.fr/rubrique.php?id_rubrique=91

(In this text, % or $ at the beginning of a line represents a shell prompt.)

A directory with a name like sdfred20080610/ will be created in the current
directory. The number represents the software version.

2. Compile

Move (cd) into the the sdfred20080610 directory and build the software.

$ cd sdfred20080610/
$./configure
$ make all

Then programs are installed into sdfred20080610/bin/

3. Add directory to PATH

Use an editor to add the sdfred20080610/bin directory (executables directory) to
your PATH environment in your shell configuration file. In this example,
/wa03a/subaru20/sdfred20080610/bin is the directory where SDFRED binaries are
installed. You should modify as your environment.

bash users:

Edit ~/.bashrc *and* ~/.bash_profile as follows;

Example:

$ emacs ~/.bashrc
$ emacs ~/.bash_profile

PATH=/wa03a/subaru20/sdfred20080610/bin:$PATH
export PATH

~/.bashrc is used when new terminal is open, and ~/.bash_profile is used when you
log into the computer. Therefore you need to modify both files.

After the files are updated, reflect the new setting to the current environment. This
procedure is required only when you change the shell configuration files.

$ source ~/.bashrc

csh/tcsh users:

Edit ~/.cshrc to add the directory where SDFRED binaries are installed
(executables directory) as follows;

Example:

% emacs ~/.cshrc

set path=(/wa03a/subaru20/sdfred20080610/bin $path)

After the files are updated, reflect the new setting to the current environment. This

procedure is required only when you change the shell configuration files.

% source ~/.cshrc
% rehash

4. Set environmental variables

LANG, and LC_ALL should be set as "C", so that shell scripts and perl scripts work
correctly

bash users:

Again, edit ~/.bashrc *and* ~/.bash_profile as follows;

$ emacs ~/.bashrc
$ emacs ~/.bash_profile

Add following two lines.

export LANG=C
export LC_ALL=C

And reflect the setting to the current session.

$ source ~/.bashrc

csh/tcsh users:

Again, edit ~/.cshrc as follows;

Example:

% emacs ~/.cshrc

Add following two lines.

setenv LANG C
setenv LC_ALL C

And reflect the setting to the current session.

% source ~/.cshrc

5. Other settings

If you use IRAF, you need to execute mkiraf in your "work directory".

Other additional setting may be required depends on your computer environment

When you have finished the setting, check the environment as follows

Example:

$ env

$ which namechange.csh

In env command result, check LANG, and LC_ALL environment.

And "which" command found the directory you have installed, the setting is OK

Once you finish the software preparation and setting, you can start from the next
section next time.

Preparation of Data

Before staring a reduction, you need to sort data files into directories.

SDFRED requires that all input files must be in the "current directory." If you want
to process some files in a different directory, the files should be recognized as if
they are in the "current directory", by making symbolic links, or by other way.

Practice Dataset

A practice dataset (spcam_training_data.tar.gz; 753MB uncompressed) is available
at

http://optik2.mtk.nao.ac.jp/subaru_red/SPCAM/
(spcam_training_data.tar.gz)

We have checked that the software works well for the dataset.

The specific examples given in the manual refer to this practice dataset.

Example:
extract practice data
$ tar xvzf spcam_training_data.tar.gz

After the data extraction, check the images; Which are the object frames? Which
can be used as flat? Which are the standard star frames?

Also, examine images by eye-inspection using saoimage-ds9 or other your favorite
FITS browser. Checkpoint is, for example, "are there any files with
distorted/elongated stars?" If you have observation night log, refer to it.

SUPA0020*.fits are the object frames (target object), and SUPA0019512*.fits are
the standard frames in the practice dataset.

In this version (ver1.4), the data are assumed to be reduced/analyzed in two
directories (object/ and standard/) which are in the same directory as
spcam_training_data.

---(work directory root) - spcam_training_data/
 - object/
 - standard/

An example of making symbolic links:

$ mkdir object standard

http://optik2.mtk.nao.ac.jp/subaru_red/SPCAM/

The result of ls is like this;

$ ls
object spcam_training_data spcam_training_data.tar.gz standard

Then link object frames into object/ directory

$ cd object/
$ ln -s ../spcam_training_data/SUPA0020*.fits .

Copy blank map data

$ cp ../spcam_training_data/blankmap* .

Link standard object frames into standard/ directory

$ cd ../standard/
$ ln -s ../spcam_training_data/SUPA0019512?.fits .

Check that 10 FITS files are in standard/ directory, and 50 FITS files and 6
blankmaps in object/ directory.

Retrieval from smoka

All data obtained at the Subaru are available at smoka public archive after 1.5 year
of the proprietary period.

http://smoka.nao.ac.jp/

You can reduce the data from smoka with SDFRED.

In this manual, the target object and the standard object are reduced in different
directories.

Check that data in a directory have observed with the same filter (e.g. V-band),
and be the same data type (object/standard). Otherwise, you need to separate them
into directories.

Data Reduction Sequence

Target Object frames:

Step Command time Files Generated

(1) Renaming namechange.csh 20s,1m (H*.fits)

(2)
Overscan and bias
subtraction

overscansub.csh 1s,1s (To_TH*.fits)

(3) Making flat frames
mask_mkflat_HA.cs
h

6m,20
m

(Flat frames:
mflats.fits)

(4) Flat fielding ffield.csh 30s,2m (fTo_RH*.fits)

http://smoka.nao.ac.jp/

(5) Distortion correction and

atmospheric dispersion
correction

distcorr.csh 1m,6m (gfTo_RH*.fits)

(6) PSF size measurement fwhmpsf.csh *,* ---

(7) PSF size equalization
psfmatch_batch.cs
h

40m,80
m

(pgfTo_RH*.fits)

(8) Sky subtraction skysb.csh 1m,3m (spgfTo_RH*.fits)

(9) Masking out AG probe mask_AGX.csh 15s,2m (AspgfTo_RH*.fits)

(10) Masking out bad regions blank.csh, 15s,1m (bAspgfTo_RH*.fits)

(11) Alignment makemos.csh
2m,15
m

(Alignment file:
*.mos)

(12) Coadding imcio2a
3m,12
m

(Final Image)

Standard Object frames:

Step Command Files Generated

(1S) Renaming namechange.csh (H*.fits)

(2S) Overscan and bias subtraction overscansub.csh (To_TH*.fits)

(3S) Flat fielding ffield.csh (fTo_RH*.fits)

(4S) Distortion correction and

atmospheric dispersion correction distcorr.csh (gfTo_RH*.fits)

(5S) Relative gain correction --

Each of the processes will apply to a different subset of data frames. The basic
data flow consists of making lists of these various subsets, and providing these lists
to various programs within the SDFRED package. Each step produces a new set of
images or data files. The naming convention for the various new files are in
parenthesis after each step in the list above.

The times listed in the table are how long it takes to reduce the practice dataset(5
exposures), and a bit larger set(17 exposures), respectively. The time is measured
using a Intel Xeon 3.0GHz WS with RedHat 5. The time is not linear to the number
of the exposures. Although the actual time it will take to reduce any dataset will
differ, the times should provide an idea of the relative amount of time one can
expect each step to take.

To save disk space, you can delete files after they have been used in the next step
(except *.mos and *mflats*.fits, since they are also used in the standard object
reduction). However, if there is any possibility that you will be re-reducing the data
may be useful to keep the H*.fits (renamed), fTo_RH*.fits (flat fielded), and
AspgfTo_RH*.fits (AG probe masked) files.

Note that other temporary files (tmp*; *.fits) are also produced in reduction
processes. These can safely be ignored.

Reduction of target object

Step 1: Basic Data Check and Renaming of Data Frames

$ namechange.csh [raw fits file list]

 raw fits file list = names of raw data files

A useful step prior to data reduction is the renaming of the data files so that their
name reflects the observation date, exposure, and component CCD.

The filename such as SUPA... is changed as H[Date][type][ID]_[chipname].fits.

The date YYMMDD is HST(Hawaii time), and 1 day before DATE-OBS.

ID is the frame serial number of the observation day of each
type(bias,dark,object).It is very confusing but both target object and standard has
"object" ID.

Example:

$ cd object/

enters into the directory of object frames

$ ls -1 SUPA*.fits > namechange.lis

The option of "ls -1" is "minus one".

$ namechange.csh namechange.lis

The namechange.lis should be like that

$ cat namechange.lis
SUPA00204610.fits
SUPA00204611.fits
SUPA00204612.fits
...

Result

The files are renamed as follows;

H030425object025_si001s.fits
H030425object025_si002s.fits
H030425object025_si005s.fits
...

If you make symbolic links to the files in ../spcam_training_data/, they still points to
SUPA***, but their names are such as H030425object025_si001s.fits. That is OK

Note that each CCD of Suprime-Cam has a name:

-------- AG probe location ----------
w67c1 w6c1 si006s si002s w7c3
w93c2 w9c2 si005s si001s w4c5

Step 2: Overscan subtraction and bias subtraction

 $ overscansub.csh [overscansub.lis]

 overscansub.lis = list of raw data files

The script overscansub.csh issues commands that subtracts the median value of
the overscan region in each line, and trims the overscan region off from the frame.
The Suprime-Cam CCDs typically have an overscan level of about 10000 ADU.

The CCDs in Suprime-Cam have very little bias pattern, so only overscan is
subtracted

Example:

$ ls -1 H*.fits > ovserscansub.lis
$ overscansub.csh ovserscansub.lis

The overscansub.lis should be like that

$ cat overscansub.lis
H030425object025_si001s.fits
H030425object025_si002s.fits
H030425object025_si005s.fits
...

Checkpoints:

Compare the values of original frame and overscan subtracted image. The latter
should be about 10000 ADU smaller

Checking the file headers with a procedure like IRAF's imhead (cl> imhead H*.fits)
should show that the image sizes are smaller after removing the overscan region.

Step 3: Make flat field frames

 $ mask_mkflat_HA.csh [mkflat.lis] [base name] [lower value] [upper value]

 mkflat.lis = list of files to use to make flats
 base name = basename for the flats
 lower value = minimum value to accept (0.5 is recommended)
 upper value = maximum value to accept (1.3 is recommended)

The script mask_mkflat_HA.csh creates a flat from files with objects. The flat file is
used to correct the difference of sensitivity of each pixel in a frame. Areas
vignetted by the AG probe is masked out, normalized, and a median of them is
taken.

There are three basic types of flats: sky flats (blank fields), twilight flats, and dome
flats. Sky flats are thought to be the best since the optical path of the light and the
spectral distribution of the light of the flat is identical to the actual target frames.
In fact, the target frames can be used to produce flats as long as there are no large
objects that extend several hundred pixels in the frames.

Example:

$ ls -1 To_RH*.fits >mkflat.lis
$ mask_mkflat_HA.csh mkflat.lis obj 0.5 1.3

This is an example of making a sky flat by combining the object frames

After running the script, there should be flat files for the 10 CCDs.

obj_mflat_si001s.fits
obj_mflat_si002s.fits
...

The mflat files should have values around unity and should have smooth pattern
without much local structures. U-band and bands redder than z will have more
structure than other bands. However, any local variations should be continuous. It
there are sudden jumps in the flat values, the flat would be bad.

Note that the value -32768 is the blank value used in SDFRED, and it is OK.

Note 1:

In principle, a flat can be produced with a minimum of three exposures. However,
the smaller the number of frames used, the larger the noise and residual effects of
objects in the frame. We recommend to use at least 6 frames, ideally over 20
frames(exposures) to produce a flat (especially sky flats). In practice dataset, the
flat is created from 5 exposures, and the error is large.

Note 2:

It is important not to mix the different types of flat frames since their background
illumination have different slopes. For example, SDFRED may produce flats with
discontinuous stripes when applied to frames with different illumination patterns.
It is due to the algorithm used in SDFRED.

Note 3:

The SDFRED command uses a parameter file to mask out known bad columns and
hot pixels. the default parameter file is optimized for data taken after August 2002
(Messia V). To reduce data taken before this, follow the procedures below.

$ cd sdfred20080610

For data taken before March 2001 (old CCD):

$ cp sdfredSH/mask_mkflat_HA/blankmap_oldCCD/* sdfredSH/mask_mkflat_HA/blankmap/

For data taken between April 2001 and August 2002 (Messia III):

$ cp sdfredSH/mask_mkflat_HA/blankmap_messiaIII/* sdfredSH/mask_mkflat_HA/blankmap/

To return to the default:

$ cp sdfredSH/mask_mkflat_HA/blankmap_messiaV/* sdfredSHmask_mkflat_HA/blankmap/

Note 4:

In the practice dataset, the flat is created in object/ directory, and used later in
standard/ directory. Usually, several targets taken with the same filter is mixed to
create flats. In such case, we can recommend to create another directory .../flat/
and make symbolic links of To_R* files in all targets, and execute the command in
flat/ directory. (Note that the standard star frames that have shorter exposure
times must not be included in the list.)

e.g.)
---(work directory root) - object1/
 - object2/
 - object3/
 - flat/
 - standard/

Step 4: Flat Fielding

 $ ffield.csh [ffiled_mf.lis] [ffield_im.lis]

 ffield_mf.lis = list of flats to be used
 ffield_im.lis = list of (overscan subtracted) files to be flat fielded

This command corrects the pixel to pixel variation in sensitivity, and the effect of
vignetting of the telescope optics.

Example:

$ ls -1 obj_mflat*.fits > ffield_mf.lis
$ ls -1 To_*.fits > ffield_im.lis
$ ffield.csh ffield_mf.lis ffield_im.lis

After the flat fielding, the background in each file should be almost flat. The
circular illumination pattern seen in the raw data at the edge of the focal plane
(w67c1, w93c2, w7c3, w4c5) should almost disappear. If the flat is poor, a slight
(several %) illumination pattern may remain.

Step 5: Distortion correction and atmospheric dispersion
correction

 $ distcorr.csh [distcorr.lis]

 distcorr.lis = list of (flat fielded) files to be corrected

The script distcorr.csh corrects the field distortion due to the telescope optics, and
the differential atmospheric dispersion. The input frames are assumed to be flat-
fielded images. The corrections are based on the airmass and other values
recorded in the FITS header.

Example:

$ ls -1 fTo_RH030*.fits >distcorr.lis
$ distcorr.csh distcorr.lis

After the distortion correction, diagonal patterns may show up in the background.
This is due to the fact that fractional pixel shifts smooth out the noise while integer
pixel shifts leave the original noise characteristics intact.

Step 6: Measurement of the PSF size

 $ fwhmpsf_batch.csh [fwhmpsf_batch.lis] [max number of objects]
 [min peak flux] [max peak flux] [min FWHM] [max FWHM]

 fwhmpsf_batch.lis = list of images to check PSF
 max number of objects = the number of stars to use to measure
 the PSF in each image
 min peak flux = minimum peak flux of stars to use
 max peak flux = maximum peak flux of stars to use
 min FWHM = minimum FWHM of stars to use
 max FWHM = maximum FWHM of stars to use

Before coadding, the equalization of PSF is needed. The script fwhmpsf_batch.csh
is used to determine an appropriate target PSF for a list of images. The script
measures the FWHM of the PSF in several images. The script outputs a log and a
histogram to the standard output.

Example:

$ ls -1 gfTo_RH03042*.fits > fwhmpsf_batch.lis
$ fwhmpsf_batch.csh fwhmpsf_batch.lis 50 2000 30000 2.0 7.0 \
 > fwhmpsf_batch.log

The log file should contain entries such as:

gfTo_RH030425object025_si001s.fits 3.60 1 6 15 13 0
gfTo_RH030425object025_si002s.fits 3.80 1 1 20 16 0
gfTo_RH030425object025_si005s.fits 3.60 2 13 19 0 0
...
3.3 |
3.4 |
3.5 |**
3.6 |**
3.7 |*
3.8 |**
3.9 |**
4.0 |
4.1 |*

The log format of each line is as follows:

[name of image]

[mean FWHM of PSF]

[number of objects with within 0.1'' of mean PSF-0.2]

[# within 0.1'' of mean PSF-0.1]

[# within 0.1'' of mean PSF]

[# within 0.1'' of mean PSF+0.1]

[# within 0.1'' of mean PSF+0.2]

An ASCII histogram shows the distribution of mean PSFs in the images.

Some training is required to determine the target PSF size.

In the example above, the images have FWHM values centered around 3.7 pixels.
Target=4.1 is the most conservative solution. If you are only interested in the flux
of objects, but not the shape of the image, the conservative choice is
recommended. Target=3.9 is also preferable, if you think the difference of 4.1 and
3.9 is negligible. Or, if there were plenty of data, you can exclude the images with
the poor PSF (e.g, all data whose PSF is larger than 3.7), so that the PSF in the
final image be better. The decision highly depends on the scientific goal.

Note 1:

 $ fwhmpsf.csh [image file] [max number of objects]
 [min peak flux] [max peak flux] [min FWHM] [max FWHM]

 image file = the image to check PSF
 max number of objects = the number of stars to use to measure
 the PSF in each image
 min peak flux = minimum peak flux of stars to use
 max peak flux = maximum peak flux of stars to use
 min FWHM = minimum FWHM of stars to use
 max FWHM = maximum FWHM of stars to use

To find the PSF of a single image use the script fwhmpsf.csh. The parameters are
the same as for fwhmpsf_batch.csh. Just feed it the name of a image rather than a
list of images.

Example:
$ fwhmpsf.csh gfTo_RH030425object025_si001s.fits 50 2000 30000 2.0 7.0

This produces output like:

gfTo_RH030425object025_si001s.fits 3.60 1 6 15 13 0

This output indicates that the image gfTo_RH030425object025_si001s.fits has a
PSF FWHM of 3.6 pixels.

Note 2:

 $ starselect.csh [image name][max number of objects][min peak flux]
 [max peak flux][min FWHM][max FWHM][output file]

 image name = name of image to check
 max number of objects = the number of stars to use to measure the PSF
 min peak flux = minimum peak flux of stars to use
 max peak flux = maximum peak flux of stars to use
 min FWHM = minimum FWHM of stars to use
 max FWHM = maximum FWHM of stars to use
 output file = name of file with location of selected stars

The script starselect.csh is useful for determining the appropriate parameters
([max number of objects] [min peak flux] [max peak flux] [min FWHM] and [max

FWHM]) for selecting stellar objects in an image.

$ starselect.csh gfTo_RH030425object025_si001s.fits 50 2000 \
 30000 2.0 7.0 output.reg

The script will produce an output file (output.erg) that contains the location of
stellar objects that are selected using the given criteria. The output is formatted so
the the image can be displayed with the locations of stars marked with a circle
using saoimage-ds9. If the majority of objects selected are actual stellar objects,
then the parameters are appropriate for psf_match for a given image. If the data
quality varies from image to image, it is important to check whether or not a single
set of parameters are appropriate for all the data. If not, it is better to run
psfmatch_batch multiple times using the appropriate criteria for each subset of
data.

Using saoimage-ds9 is the easiest way to display a image and overlay the location
of the selected stars.

$ ds9 gfTo_RH030425object025_si001s.fits

Select Region, Load, and select output.reg. Then green circles will be overplotted
on the image. If more than half of the objects selected are stellar objects, the
parameters you adopted are appropriate

Note 3:

The scripts fwhmpsf_batch.psf, starselect.csh and psfmatch_batch.csh(next step),
may not work in crowded fields. In crowded fields it may be necessary to estimate
the PSF manually. In this case, to obtain the same results as the psfmatch script,
each image that has a PSF more than 0.1'' smaller than the target PSF should be
gaussian smoothed with a gaussian that has a sigma=sqrt(PSF_target^2 -
PSF_image^2)/2.35482. The psfmatch program actually iterates around the given
sigma in order to get the best matched final PSF.

Step 7: Equalize the PSF size

 $ psfmatch_batch.csh [psfmatch_batch.lis] [max number of objects]
 [min peak flux] [max peak flux] [min FWHM] [max FWHM] [target FWHM]

 psfmatch_batch.lis = the list of images to match to a single PSF
 max number of objects = the number of stars to use to measure the
 PSF in each image
 min peak flux = minimum peak flux of stars to use
 max peak flux = maximum peak flux of stars to use
 min FWHM = minimum FWHM of stars to use
 max FWHM = maximum FWHM of stars to use
 target FWHM = FWHM to smooth all the data to

The script psfmatch_batch.csh matches the PSF of all images to be combined to a
predetermined target FWHM. Images with PSFs smaller than the target (within a
small range) are gaussian smoothed, other images are simply copied. The target
PSF should represent the typical PSF of the worst exposure that is going to be
combined.

The command prints a log to the standard output with the following columns:

[name of psf_matched_image]
[FWHM of PSF after matching]
[number of objects with within 0.1'' of target PSF-0.2]
[# within 0.1'' of target PSF-0.1]
[# within 0.1'' of target PSF]
[# within 0.1'' of target PSF+0.1]
[# within 0.1'' of target PSF+0.2]

The log can be used to check if the PSF matching worked properly. If the command
worked, then the number of objects with FWHM within 0.1'' of the target PSF
should be largest, with fewer objects with smaller and larger FWHM. If this is not
the case it is best to check the PSF by hand.

Example:

$ ls -1 gfTo_RH03042*.fits > psfmatch_batch.lis
$ psfmatch_batch.csh psfmatch_batch.lis 50 2000 30000 2.0 7.0 3.7 > psfmatch_batch.log
&

The command produces output like:

pgfTo_RH030429object017_si001s.fits 3.70 0 5 38 6 0

The IRAF procedure imexam is useful for checking PSFs. (Display image; cl>
imexam image.fits; place cursor above a star; type "r" or "a" to measure FWHM)

Note that different softwares use different fitting algorithms and return different
FWHM values. SDFRED uses FWHM values generated by SExtractor, which are
different from those produced by IRAF's imexam task. The purpose of checking
with IRAF is not for an exact match in the FWHM values, but to confirm that the
output images have comparable PSF sizes after the matching.

The appropriate parameter values for psfmatch will change depending on the
quality of the data. Different bandpasses, integration times, and weather
conditions will require different parameters.

Step 8: Subtracting the Sky

 $ skysb.csh [skysb.lis] [sky-mesh]

 skysb.lis = list of images to sky subtract
 sky-mesh = size of mesh for determining sky values

The script skysb.csh computes a mesh pattern that represents the sky background
and subtracts it from the image. The script determines the sky in sky-mesh x sky-
mesh sized sections of the image and interpolates bilinearly. The mesh size must
be at least twice the size of the largest object in interest.

Example:
$ ls -1 pgfTo_RH03042*.fits > skysb.lis
$ skysb.csh skysb.lis 64 > skysb.log

Once the sky is subtracted, the background in an image should be around 0 with
no spatial slope. If there is a large object that occupies a large fraction of the
image, the algorithm will fail. Crowded fields would also be problematic. The sky
should be determined and subtracted manually in such cases

Step 9: Masking the AG Probe

 $ mask_AGX.csh [mask_AGX.lis]

 mask_AGX.lis = list of files to mask

The script mask_AGX.csh will mask areas vignetted by the AG probe by the value -
32768. The script should only affect the top few hundred rows of the data from
chips w671, w6c1, si006s, si002s, and w7c3. Other files are not affected.

Example:
$ ls -1 spgfTo_RH03042*.fits > mask_AGX.lis
$ mask_AGX.csh mask_AGX.lis

Although only half the CCDs are potentially affected by the AG probe, the input file
list should include all the object files so that files with the same naming convention
exist to make list making for subsequent steps easier.

Step 10: Masking Bad Pixels

Data in some pixels may be corrupted due to instrument trouble and other
problems during the observations. Such regions need to be identified by inspecting
individual data images and masked. For example, background areas that failed to
flatten well and systematically deviate from 0 are candidates for masking. If
enough images are stacked so that there is at least one image with good data
contributing to all parts of a final combined image, there should be enough
information for most analysis purposes, even though areas corresponding to
masked data will have a lower signal to noise.

The SDFRED package contains three scripts that can be used to mask bad data.

Linear region

 $ line_bank [input image] [x1] [y1] [x2] [y2] [width]
 [blank value] [output image]

 input image = name of image to mask
 x1 = x coordinate of start of line
 y1 = y coordinate of start of line
 x2 = x coordinate of end of line
 y2 = y coordinate of end of line
 width = width of line
 blank value = mask value (usually -32768)
 output image = name of masked image

The script line_bank masks a linear structure such as satellite trails.

Example:

$ line_blank AspgfTo_RH030425object025_si001s.fits \
 88 112 1940 837 30 -32768 lAspgfTo_RH030425object025_si001s.fits

The example masks line which crosses (88,112) and (1940,837) and around 30
pixels width.

Circular region

 $ circular_blanks [input image] [blanklist] [blank value] [output image]

 input image = name of image to mask
 blank list = file that contains the x and y coordinates and
 the radius of the area to be masked
 blank value = mask value (usually -32768)
 output image = name of masked image

The script circular_blanks masks circular regions.

Example:

$ circular_blanks lAspgfTo_RH030425object025_si001.fits \
 blanklist -32768 clAspgfTo_RH030425object025_si001s.fits

where blanklist looks like:

$ cat blanklist
365 1835 80
1202 3582 100

The two lines correspond to circle of (x,y,r)=(365,1835,80) and
(x,y,r)=(1202,3582,100).

Rectangular regions

 $ blank.csh [blank list]

 blank list = list of files with rectangular regions that have
 to be masked.

For each image, xxx.fits, in the blank list the script blank.csh will look for a file
named as blank_xxx in the same directory, and mask rectangular regions specified
in the file to -32768. Each line in the file blank_xxx should contain the x and y
coordinates of two opposite corners of a rectangular area.

The IRAF routine imexam is useful for getting the coordinates. (cl> imexam; press
"b" at two corners to define a rectangle; the coordinates of the corners will be
printed to the screen in the order of x1 x2 y1 y2.)

Example:

$ ls -1 AspgfTo_RH03042*.fits > blank.lis
$ blank.csh blank.lis

Mask files have been included for a subset of images,

blankmap_AspgfTo_RH030425object025_si002s

...

These files have entries like:

$ cat blankmap_AspgfTo_RH030425object025_si002s
1974 2034 2356 2634
1528 1804 4024 4070
...

The script masks the regions specified for files with mask files and will simply
create copy files that don't need to be masked. Often, if the flat is poor, the same
region of each image corresponding to a particular CCD may need to be masked.

Note that the blankmap_* parameter files included in the practice dataset is from
the Subaru Deep Field project and are not necessarily suitable for the practice
dataset. If all of the sample files are applied to the practice data, areas that
shouldn't normally be masked will be masked. These files are strictly for practice
use. You may wish to create your own mask files to apply to the practice data.

Step 11: Determine Alignment and Scaling

 $ makemos.csh [makemos.lis] [starsel nskysigma] [starsel npix]
 [starsel peakmin] [starsel peakmax]
 [aperture phot radius in pix] [output mos-file name]

 makemos.lis = list of images to align
 starsel nskysigma = signal to noise level of objects
 to use for alignment
 starsel npix = number of continuous pixels with [starsel nskysigma]
 to identify object
 starsel peakmin = minimum value of peak pixel of alignment stars
 starsel peakmax = maximum value of peak pixel of alignment stars
 aperture phot radius in pix = radius to use for aperture photometry
 output mos-file name = file to record alignment and scaling

Signal to noise can be improved by combining multiple images to produce a final
image. The script makemos.csh determines the relative shifts, rotations, and flux
scales of different images. The script identifies stellar objects in each image and
determines the the shifts, rotations, and flux scale from stellar objects common to
multiple images. The first image in the list is used as the reference image.

Example:

$ ls -1 bAspgfTo_RH03042*.fits > makemos.lis
$ makemos.csh makemos.lis 5 20 500 10000 10 all.mos > makemos.log

The script will print to the standard output the number of stellar objects selected
for alignment and scaling.

 ...
 selected stars = 721
 ...

The script is likely to fail if the number of selected stars per image is small (< 30)
or very large. Adjust the parameters [starsel nskysigma], [starsel npix], [starsel
peakmin], and [starsel peakmax] will help the script select appropriate stellar
objects.

The best parameters for selecting objects in this step is different from PSF
measurement, because a different underlying algorithm is used to find a wider
range of objects to determine relative positions and flux scaling that works over a
range of fluxes.

Example:

$ cat all.mos
bAspgfTo_RH030425object025_si001s.fits 0.000000 0.000000 0.000000 1.000000
bAspgfTo_RH030425object025_si002s.fits 1.601005 4088.551744 -0.000275 0.989406

bAspgfTo_RH030425object025_si005s.fits -2118.787371 1.104977 -0.000282 0.983195
...

There are five columns in the output *.mos file: the name of the image, the x offset,
the y offset, the counter clockwise rotation (radian), and flux ratio. If all rows have
values in the five columns, the alignment and scaling was probably successful. If
the alignment and scaling are unsuccessful, the output file may not even be
produced or may have missing or unreasonable values.

The procedure for quick check of all.mos is still under discussion. Some examples
are as follows:

1. Examining the final image created in the next step is one of the most
important checkpoint. However, it is not the only point. If the number of
exposure is large, it is difficult to detect some small defects by eye inspection
from the final image.

2. Make a scatter plot of 2nd and 3rd column of all.mos. The result shows the
relative position of each shot, and represent the dither pattern and the chip
position. If there is a large leap, the matching would have been failed.

3. The distance between chips should be almost constant. (A slight change
would exist due to atmospheric dispersion between chips.) The distance of
two chips of the same exposure, for example between si001s and w67c1, is
largely different from that of other exposures, the data of the corresponding
shot would be incorrect.

4. The fifth column of *.mos (relative flux) of a chip should be almost
proportional to the exposure time, if sky condition is photometric. (It is
affected by atmospheric extinction (airmass) though.)

In the next step, each image is converted with the data in all.mos as follows;

x_mos = cos(theta) x -sin(theta) y + x_local
y_mos = sin(theta) x +cos(theta) y + y_local

Note 1:

If combining is not needed, you may skip Step 11 and 12, and end the reduction.
Or, if the data is not contiguous, you cannot succeed in this step.

Step 12: Combining

 $ imcio2a [parameters] [mos file] [result image]

 parameters = parameters that define the combining algorithm usually
 "-dist_clip -nline=20 -dtype=FITSFLOAT -pixignr=-32768"
 mos file = file containing the alignment and scaling values
 (output from makemos.csh)
 result image= the name of the final image

imcio2a combines the images into a final combined image using the output from
makemos.csh (*.mos). Using the parameter -dist_clip will combine the images
using a clipped mean algorithm.

Example:

$ imcio2a -dist_clip -nline=20 -dtype=FITSFLOAT -pixignr=-32768 all.mos all.fits

The parameter -dist_clip can be replaced by -dist_med to get a weighted median
combined image or -dist_add to use a weighted mean pixel values.

Note that the header of the new image is incomplete. Use the first file listed in
makemos.lis in the previous step as a reference header.

Here are the meanings of the typical parameters:

-dist_clip : use a clipped mean algorithm for combining

-nline=20 : set the y direction buffer width to 20

-dtype=FITSFLOAT : make the output data floating point

-pixignr=-32768 : ignore pixels valued -32768

For details and other optional parameters of imcio2a will be printed by

 $ imcio2a -h

Reduction of standard object

Following 4 steps is for data reduction of standard objects. They are the same as
that of target object, except the procedure is done in standard/ directory, and the
flat frames are simply copied from object/ directory.

Step 1S Renaming

$ namechange.csh [raw fits file list]

 raw fits file list = names of raw data files

Renaming is done in the standard/ directory

Example:

$ cd standard/

enters into the directory of standard frames

$ ls -1 SUPA*.fits > namechange.lis
$ namechange.csh namechange.lis

The namechange.lis should be like that

$ cat namechange.lis
SUPA00195120.fits
SUPA00195121.fits
SUPA00195122.fits
...

Result

The files are renamed as follows;

H030330object044_si001s.fits
H030330object044_si002s.fits
H030330object044_si005s.fits
...

Step 2S Overscan and bias subtraction

 $ overscansub.csh [overscansub.lis]

 overscansub.lis = list of raw data files

In standard/ directory, overscan is subtracted from all the data.

Example:

$ ls -1 H*.fits > overscansub.lis
$ overscansub.csh overscansub.lis

$ cat overscansub.lis
H030330object044_si001s.fits
H030330object044_si002s.fits
H030330object044_si005s.fits
...

and, To_RH030330object044_si001s.fits ... are created.

Step 3S Flat fielding

 $ ffield.csh [ffiled_mf.lis] [ffield_im.lis]

 ffield_mf.lis = list of flats to be used
 ffield_im.lis = list of (overscan subtracted) files to be flat fielded

The purpose of standard object frames is to calibrate target frames. Therefore the
flat frames must be the same as that used in the reduction of target object.

Example:

$ cp ../object/obj_mflat*.fits .
$ ls -1 obj_mflat*.fits > ffield_mf.lis
$ ls -1 To_RH*.fits > ffield_im.lis
$ ffield.csh ffield_mf.lis ffield_im.lis

and fTo_RH030330object044_si001s.fits ... are created.

Step 4S Distortion correction and atmospheric dispersion
correction

 $ distcorr.csh [distcorr.lis]

 distcorr.lis = list of (flat fielded) files to be corrected

The distortion correction is required since it slightly changes the size of pixels, and
therefore flux.

Example:

$ ls -1 fTo_RH*.fits >distcorr.lis

$ distcorr.csh distcorr.lis

Step 5S Correction of relative flux scale among chips

After step (4S), the relative flux between different chips is not corrected. For
example, the sensitivity of w67c1 is about half in 2002-2008/06 data. If there is a
star which has 10000 ADU in w67c1, it should have ~ 20000 ADU if it were
observed in other chip. The relative flux scale should be corrected according to
*.mos created in step (11) of target object.

This step is unnecessary if standard star is only in si001s. Since standard stars are
distributed in several chips in the practice data, this process is needed.

In this step, the data is divided by a typical relative value of the chip to the
reference chip. Currently (SDFRED ver1.*), the script for this step is not provided.
Users should do this process manually.

Notices on Data

In principle, SDFRED (ver1.*) can reduce Suprime-Cam data taken between
2000/10 and 2008/07. However, data taken before 2001/04 have several problems.

1. Data in 2000/11 - 2000/12
The CCD linearity has problem for DET-ID=0,1,7,8,9.

2. Data in 2000/11 - 2001/01
The WCS information in the FITS header is wrong. The flag of CDELT1 is
negated, and the CD matrix is wrong. Since SDFRED uses WCS information
in step (11), registration (makemos.csh) fails with this data.

3. Data in 2000/10 - 2001/03
One CCD (DET-ID=6; w67c1) is dead. However, reduction with SDFRED is
possible for 9 chips. Note that CCDs were replaced in 2001/04 and flat
pattern and gain is changed, while the basic format of CCDs (e.g., overscan
format, chip names) is unchanged.

4. Data in 2008/07/21 - now
Suprime-Cam is largely upgraded in 2008/07, including CCD replacement
and change of file format. SDFRED ver1.* cannot reduce the data.

Acknowledgment

SDFRED team thanks Takehiko Wada (JAXA), Chiaki Ihara (JAXA), Hitoshi Hanami
(Iwate Univ), Myungkook James Jee (JHU), Kazuaki Ota (NAOJ), Yasunori Sato
(NAOJ), Ryosuke Yamauchi (Tohoku Univ), Elinor Medezinski (Tel-Aviv Univ), Dovi
Poznanski (Tel-Aviv Univ), Ben Cain (MIT), Tomoki Saito (Ehime Univ), Sakurako
Okamoto (Univ of Tokyo), Alice Shapley(UCLA) and Naoki Yasuda (Univ of Tokyo)
for their comments and bug report.

	Introduction
	Copyright
	How to Obtain SDFRED
	Other Software Requirements
	Computer Hardware and Operating System Requirements
	Installation
	1. Uncompress the software package in an appropriate directory.
	2. Compile
	3. Add directory to PATH
	bash users:
	csh/tcsh users:

	4. Set environmental variables
	bash users:
	csh/tcsh users:

	5. Other settings

	Preparation of Data
	Practice Dataset
	Retrieval from smoka

	Data Reduction Sequence
	Reduction of target object
	Step 1: Basic Data Check and Renaming of Data Frames
	Step 2: Overscan subtraction and bias subtraction
	Step 3: Make flat field frames
	Note 1:
	Note 2:
	Note 3:
	Note 4:

	Step 4: Flat Fielding
	Step 5: Distortion correction and atmospheric dispersion correction
	Step 6: Measurement of the PSF size
	Note 1:
	Note 2:
	Note 3:

	Step 7: Equalize the PSF size
	Step 8: Subtracting the Sky
	Step 9: Masking the AG Probe
	Step 10: Masking Bad Pixels
	Linear region
	Circular region
	Rectangular regions

	Step 11: Determine Alignment and Scaling
	Note 1:

	Step 12: Combining

	Reduction of standard object
	Step 1S Renaming
	Step 2S Overscan and bias subtraction
	Step 3S Flat fielding
	Step 4S Distortion correction and atmospheric dispersion correction
	Step 5S Correction of relative flux scale among chips

	Notices on Data
	Acknowledgment

