

A QSO host galaxy and its Ly α emission at $z=6.43$

Goto et al., 2009, MNRAS, 400,843

Host properties
$\mathrm{M}_{1450 \mathrm{~A}}=-23.9$
Re>11kpc
SFR(Lya) $>1.6 \mathrm{M}_{\text {sun }} / \mathrm{yr}$
$6 \times 10^{8-1}-10^{10} \mathrm{M}_{\text {sun }}$

Figure 2. Composite pseudo-color innge. The RGB colors are assigued to $\Sigma^{\prime \prime}, z_{+}$and $i^{\prime \prime}$-bands, respectively.

Tomo GOTO

Observation: Subaru S-Cam(30x30') CFHQSOJ2329 z=6.43 (most distant QSO known)

- Limiting magnitude
- I':26.73
- Z':25.79
- Y:25.09
- PSF ~ 0.5 "

PSF subtraction psf
 residual

Y-band residual: 3 sigma

Figure 4. Both panels show residuals from the PSF subtraction in the z_{r} band. The right-hand panel is box-car smoothed with 10 pixel. The figures are north up, east left.

Radial profile z' y

Figure 3. Radial profiles of QSO+host (blue solid line), the constructed PSF (red dashed line) and the PSF+Sérsic model (green short-dashed line) in the z^{\prime} band (left). The right-hand panel is for the z_{r} band. Profiles are normalized at a maximum value. The pixel scale is $0.2 \operatorname{arcsec}^{\text {pixel }}{ }^{-1}$.

Table 3. Magnitudes and results of the fit.

Object	i_{AB}^{\prime}	z_{AB}^{\prime}	$z_{r \mathrm{AB}}$
QSO+host	25.54 ± 0.02	21.165 ± 0.003	21.683 ± 0.007
Host	>25.34 (1σ limit)	$23.5 \pm 0.3(16 \sigma)$	$24.3 \pm 0.2(3 \sigma)$
1σ sky	25.44 (26 pixel diameter)	24.90 (26 pixel diameter)	25.46 (18 pixel diameter)

40\% of z^{\prime} light is from host (continuum)
60% is from Ly α emission
\rightarrow Host properties
$\rightarrow \mathrm{M}_{1450 \mathrm{~A}}=-23.9$
\rightarrow Re $>11 \mathrm{kpc}$
$\rightarrow \mathrm{SFR}(\mathrm{Lya})>1.6 \mathrm{M}_{\text {sun }} / \mathrm{yr}$
$\rightarrow 6 \times 10^{8}-10^{10} \mathrm{M}_{\mathrm{sun}}$

Figure 5. SEDs of QSO and its host galaxy. Overplotted are SED models of constant SFR and delta starburst with 100 Myr of age. The host is not detected in i^{\prime} band, where 1σ upper limit is shown.

Summary

- Using red-sensitive CCDs on Subaru, we found
- Most distant extended structure (host galaxy + Lya emission) around QSO (Re>11kpc) at $z=6.43$.

Host properties
$\mathrm{M}_{1450 \mathrm{~A}}=-23.9$
Re>11kpc
-SFR(Lya) $>1.6 \mathrm{M}_{\text {sun }} / \mathrm{yr}$
. $6 \times 10^{8-10^{10}} \mathrm{M}_{\text {sun }}$

Figure 2. Composite pseudo-color image. The RGB colors are assigned to z^{\prime}, z_{r} and i^{\prime}-bands, respectively.

Learning from galactic chemical abundance gradients
(HII regions)
Fabio Bresolin
radial abundance gradients
(galactic chemical evolution models)
hosts of core-collapse SNe progenitors
Cepheid PL vs: Z relation
.mass-metallicity. rélationship.

cosmic evolution of metalilicity

hosts of gamma-ray burst.progenitors

Menzel, Aller \& Hebb I94I

Strong-line methods

G A E G Galaxy Evolution Explorer

Extended Disk of Galaxy M83

M83

Bresolin, Ryan-Weber,
Kennicutt \& Goddard 2009

NGC 300

Vlajic, Bland-Hawthorn \& Freeman 2009

M33
Cioni 2009

2MASS K_{s} : NGC4625

NGC 4625 Subaru+FOCAS
March 2009
with Goddard, Kennicutt
\& Ryan-Weber

NGC 4625 Subaru+FOCAS

Metallicity of Lensed Star-Forming Galaxies at z=0.8-3
 --- a spectroscopical survey with MOIRCS (Tiantian Yuan \& Lisa Kewley)

Main Science Goal: obtain a sample of lensed SF galaxies at z>l with robust global metallicity measurements By the end of 2009, finished with five Strong Lensing clusters: Al689, A68, A370, A773, MS0440

MOIRCS Mask Designs

Results Example:

A strong-lensed Low mass, Low metallicity star-forming galaxy at z=I.7 in Al 689

For the five lensing clusters, obtained restframe optical spectra for more than 40 lensed SF galaxies at $\mathrm{z}=0.8-3$ (~10 between $z=1.5-3$), will be a valuable sample for detailed metallicity analysis of high-z SF galaxies

For more details, see Yuan \& Kewley 2009, ApJL, 699, 16 I

PNe M33

F. Bresolin (UH), Stasinska (Meudon),Vilchez (Granada), Simon (Carnegie) \& Rosolowsky (UBC) MNRAS, in press (2010)

complex nucleosynthesis in AGB stars (0.8-8 Msun)
mixing/dredge-up processes
$\mathrm{He}, \mathrm{C}, \mathrm{N}$ enhanced at surface hot bottom burning: $\mathrm{C}->\mathrm{N}$
O ? depleted (high mass, ON cycle, $\mathrm{O}->\mathrm{N}$);
enhanced (alpha capture on $\mathrm{C}+3$ rd dredge up)
all is a function of stellar mass, metallicity
O / H larger in PNe for low Z (<SMC): evidence for freshly synthesized $\mathrm{O}+3$ rd dredge-up

Argon not affected by possible depletion/enhancement

Element	Slope $\quad \mathrm{PNe}$		H II regions	
	$\begin{gathered} \text { Slope } \\ \left(\text { dex kpc }^{-1}\right) \end{gathered}$	Intercept	$\begin{gathered} \text { Slope } \\ \left(\text { dex kpc }^{-1}\right) \end{gathered}$	Intercept
O...	-0.013 ± 0.016	8.47 ± 0.07	-0.030 ± 0.008	8.42 ± 0.03
N.	-0.060 ± 0.027	8.29 ± 0.12	-0.105 ± 0.015	7.52 ± 0.07
Ar	-0.018 ± 0.014	6.20 ± 0.06	-0.045 ± 0.016	6.27 ± 0.07
Ne...	-0.023 ± 0.018	7.75 ± 0.07	-0.032 ± 0.020	7.79 ± 0.08

SN CROSS-CORRELATION FILTERS

John Tonry (UH), Steve Rodney (UH, JHU), Adam Riess (JHU, STScl), Dan Scolnic (JHU) \& Mark Huber (JHU)

Large samples of SNe: need to quickly determine SN type and redshift use pair of comb filters with multiple passbands, matching peaks and valleys in broad absorption-dominated type la spectra
measure amplitude and phase of crosscorrelation between spectrum and SN la template

Subaru+SuprimeCam

Type la SN observations

in color-color diagram SN la lie on outer ring, with location dependent on z
break degeneracy in \mathbf{z} with photometric redshift of parent galaxy

