Astrophotonics: the ideal toolkit for Antarctic Observatories

N. Jovanovic,
O. Guyon, N. Cvetojevic, C. Schwab, B. Norris, S. Gross,
S. Leon-Saval, P. Tuthill, F. Martinache

Subaru Telescope, National Astronomical Observatory of Japan
The University of Sydney
Macquarie University
Observatoire de la Cote d'Azur

Key areas of Astrophotonic developments

Most common use of photonics: multimode fiber transport to spectrographs.

MMF based instruments:

- PRAXIS
- SAMI
- 2DF/AAOmega
- HEXDET
- SDSS
- HARPS N/S
- FMOS

The two photonic categories

Coupling with an Airy pattern

Pupil geometry

No central obstruction limit is 81%

Matching the PSF profile: Phase induced amplitude apodisation

Lozi et al, PASP, 121, 1232 (2009)

Guyon et al, A&A, 404, 379 (2003)

Coupling perfect with PIAA up to

Measured coupling efficiency:

Laboratory experiments:

- H-band (1550 nm)
- PIAA lenses used
- Turbulence simulator used and RMS wavefront error and low spatial frequencies varied. Windspeed fixed at 10 m/s.
- Power measured at the input and output of the fiber (not simultaneously)

Measured coupling efficiency:

Bonner et. al., PASP, 122,1 122 (2009)

Free seeing ~0.27" on average!

Reformatting when wavefront isn't perfect

Photonic lantern

October 1, 2005 / Vol. 30, No. 19 / OPTICS LETTERS

2545

1x7 fiber lantern:

Courtesy: Sergio-Leon Saval, USyd

Measured coupling efficiency:

Laboratory experiments:

- H-band (1550 nm)
- PIAA lenses used
- Turbulence simulator used and RMS wavefront error and low spatial frequencies varied. Windspeed fixed at 10 m/s.
- Power measured at the input and output of the fiber (not simultaneously)

Advantages of single-mode devices

AMBER & MIDI: Long baseline interferometer

SMF based instruments:

- Amber
- MIDI
- PIONIER
- GRAVITY
- DRAGONFLY
- FIRST

Diffraction-limited photonics have a lot to offer:

- Spatial filtering (flattening the wavefront)
- Spectral filtering (via FBGs, ring resonators)
- Temporally invariant output PSF (eliminates modal noise, allows high contrast fringes to be formed)
- Potential gains in terms of size/volume and stability

Spectral filtering with photonics

C. Trinh et al, Astron. J., 145, 51 (2013)

Photonic spectrographs

3D photonic fabrication

Psaila et al, Appl. Phys. Lett. 90, 131102 (2007)

- Unique fabrication capabilities:
- 3D optical waveguides.
- Micro-optics, -mechanics and -fluidics.
- ULI is material flexible.
- ULI is a direct-write technology.

Cheng et. al., *Appl. Phys. A.* 85, 11 (2006)

Integrated multimode waveguides

Fig. 10. Near-field intensity distributions for Circ 19 structures ((a) and (b)) and Hex 19 structures ((c) and (d)), for two translation speeds of inscription; 250 mm/minute ((a) and (c)) and 2000 mm/minute ((b) and (d)).

Jovanovic et. al., *Opt. Exp.* (20012) Spaleniak et, al. Opt Exp. (2013)

On-chip multiband processing

On-sky data: Photonic spectroscopy

VPH

X-dispersor

Reimaging

lenses

InGaAs

camera

On-sky data: Photonic spectroscopy

On-sky: SM fiber-fed spectrograph

- Extremely compact
- Light weight
- Easy to transport
- Easy to stabilize
- No realignment needed
- R=7000, more possible

On-sky: SM fiber-fed spectrograph

On-sky: Results

Preliminary data reduction

Photonic spectrographs

New AWG circuit design

54.5 mm

88.5 mm

- Array Waveguides = 960
- Resolution = ~65,000 (0.025 nm)
- Central Wavelength = 1630 nm
- Central operating order = 101
- FSR = ~ 16 nm (changes w.r.t. grating order)

Throughput is 2-3 times better than traditional disperser technologies!

Cvetojevic, N. PhD thesis and paper in preparation

No polarization dependence, throughput is equal for *s* and *p*

Bulk optic spectrographs

- Traditional optical elements: Grating (Echelle, lenses)
- Several independent components which need to be stabilized.
- Can be very compact, simple and relatively inexpensive.

Fiber Fabry-Perot & confocal etalon

Halverson et al, Proc. SPIE 8446, 84468Q (2012). Halverson et al, arXiv: 1403.6841v1 [astro-ph.IM].

Laser-locked etalon

Interferometry with photonics

Photonics in Antarctica?

- Extremely compact
- Light weight
- Easy to transport
- Easy to stabilize
- No realignment needed
- No moving parts
- Advanced functionalities

Certainly promising for remote sites

What can SCAR do for my research?

- 1) By Promoting of photonic technologies and techniques
- Getting people interested in the technology who will then help with logistical getting prototype instruments to Antarctica
- 3) Helping us apply for funding to get the project moving and to Antarctica
- 4) Database of Antarctic researchers/area and site testing results.

