Explore Point Spread Function Combing Star and Galaxy Images

Guoliang Li
Purple Mountain Observatory, CAS
2015.08.09

Outlines

- Weak lensing background
- Basis function and PSF reconstruction
- Our new algorithm
- Testing
- Summary

Weak lensing background

Point Spread Function

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Usually, the distortion introduced by PSF is larger than that caused by cosmic shear!

How do we do the reconstruction?

- A) Star identification.
- B) Parameterized image of stars.
- C) Interpolate the parameters in the filed of view.
- D) Create the expected PSF at the position of galaxies.

Parameterization of PSF PCA, Gaussianlets and Moffatlets

Test with GREAT10 data

One star in different data set

Principal Component Analysis (PCA)

Moffatlets

Gaussianlets

Motivation

- Interpolation doesn't always work when the number of star is too few or the PSF changes too fast in the field.
- Galaxy images themselves contain the local information of the PSF

Knows: 3xNgxNg

Unknows: NgxNg + 3xNPgxNPg

The number of unknowns of PSF can decrease to several by using basis functions.

$$PSF_{i} = \sum_{l}^{N_{PC}} c_{il} PC_{il},$$
 $NPg \times NPg \rightarrow N_{PC}$

$$G_0 \stackrel{.}{\triangle} PSF_i \stackrel{.}{\triangle} PSF_j = G_i \stackrel{.}{\triangle} PSF_j = G_j \stackrel{.}{\triangle} PSF_i = G_0 \stackrel{.}{\triangle} PSF_j \stackrel{.}{\triangle} PSF_i$$

$$C_{ij}^{2} = \mathop{\Diamond}\limits_{k}^{N_{pixel}} \frac{\left(G_{i} \stackrel{\dot{A}}{A} PSF_{j} - G_{j} \stackrel{\dot{A}}{A} PSF_{i}\right)_{k}^{2}}{S_{ijk}^{2}}$$

Define
$$G_{ijl} = G_i \stackrel{\dot{\triangle}}{\triangle} PC_{jl}$$

$$C^{2} = \mathop{\text{a}}_{i,j}^{N_{image}} \mathop{\text{a}}_{k}^{N_{pixel}} \left(\mathop{\text{a}}_{c}^{*} c_{jl} G_{ijlk} - \mathop{\text{a}}_{c}^{*} c_{il} G_{jilk} \right)^{2}$$

$$S_{ijk}^{2}$$

The minimization
$$\frac{\P/^2}{\P c_{mn}} = 0$$
 leads

$$\overset{N_{PC}}{\overset{N_{image}}{\overset{N_{image}}{\overset{N_{pixel}}}{\overset{N_{pixel}}}{\overset{N_{pixel}}{\overset{N$$

With noise
$$G_i' = G_i + n_i$$

Define $n_{ii} = n_i \stackrel{\triangle}{A} PSF_i$

$$G_i \stackrel{.}{\triangle} PSF_j = G_j \stackrel{.}{\triangle} PSF_i \stackrel{.}{\triangleright} w \stackrel{.}{\wedge} G_i \stackrel{.}{\triangle} PSF_j = w \stackrel{.}{\wedge} G_j \stackrel{.}{\triangle} PSF_i$$

The final equation is:

$$\overset{N_{PC}}{\overset{N_{image}}{\overset{N_{image}}{\overset{N_{pixel}}}{\overset{N_{pixel}}{\overset{N_$$

The Reconstructed PSFs

Summary

- It works!
- It needs multi-exposured images with different PSF.
- Principal Components Analysis of stars provides the most compact basis function .
- More tests needed: center disalignment, noise estimation of the cross-convolved images, incomplete PCs

Thanks