CMB Polarization at 90°S Zeeshan Ahmed **CIPAC**, Stanford/SLAC (BK slides from ZA, BK collaboration) SPT slides from Jason Gallicchio, SPT collaboration) / August 8, 2015 3rd SCAR AAA workshop

Why the South Pole?

South Pole Research Station, Antarctica

~10,000ft, ~0.25mm PWV 6 months of cold, stable sky with uninterrupted integration

South Pole CMB experiments

BICEP (2006-2008) BICEP2 (2010-2012) BICEP3 (2015-?)

Completed Operating or Proposed

SPT-SZ0.9k detectors
2007-2011

SPTpol

1.6k detectors, pol 2012-2015

SPT-3G

15k detectors, pol 2016-?

In standard Λ CDM only E-modes are present at last scattering

Lensing by intervening structure converts some to B-modes

Enables reconstruction of a map of all matter between us and recombination. Measures neutrino properties!

Inflationary gravity waves produce B-modes peaking at $1 \approx 100$: degree scales. Measure tensor-to-scalar ratio, r

Foregrounds also generate polarized emission. Can be teased apart from different spectral dependence cf CMB

BICEP2+Keck through 2013 (150 GHz)

Observation at 150 GHz focused on ~ 400 deg^2 patch = 1% of the sky

BICEP2 + Keck thru 2013 → Final map depth: 3.4 µK arcmin / 57 nK deg (RMS noise in sq-deg pixels)

BB power spectrum shows excess over lensed \(\text{CDM} \) at degree scales. To investigate this, we do a joint analysis w/ Planck, which has frequency bands w/ sensitivity to dust

Spectral dependence of CMB & contaminants

Planck 353 GHz

- Planck is the third generation space mission to observe the CMB: observes the full sky in multiple frequency bands.
- Full sky measurement, but in any given sky patch much less deep than BICEP2+Keck
- 353 GHz band is very sensitive to polarized dust emission

Planck 353GHz maps in BICEP2+Keck sky region with full simulation of observation and filtering applied plus apodization

- Correlation of I50 GHz and 353 GHz B-modes is detected with high signal-to-noise.
- Scaling the cross-frequency spectrum by the expected brightness ratio (x25) of dust (right y-axis) indicates that dust contribution is comparable in magnitude to BICEP2+Keck excess over Λ CDM.

Multi-component multi-spectral likelihood analysis

- Vary r and amplitude of dust, A_d
- Dust is detected with 5.1 σ significance
- r likelihood peaks at 0.05 but constraint consistent with zero; r < 0.12 (95% CL)

Comparison of signal levels and noise uncertainties

- The BICEP2+Keck noise is lower than the Planck noise in observed patch
- The noise in the cross spectra is the geometric mean providing high sensitivity to dust for 150x353. Thus a tight constraint can be set on dust amplitude.
- Noise in P353 is the limiting factor and to make further progress; better data at frequencies other than 150 GHz is required

Keck 2014, 2015 multi-frequency upgrades

220 GHz in 2015

BICEP3 has 10x throughput of BICEP2/Keck

	B2/Keck	BICEP3
Aperture	260mm	680mm
Optics	f/2.4	f/1.6
FOV	18 deg	28 deg
Beams	0.7 deg	0.35 deg
Dets	288	2560

*comparisons at 95 GHz

January 2015: Installed in BICEP mount

Replaces BICEP2 in Dark Sector Lab at South Pole

First light: See CMBT anisotropies in 6 hours!

BICEP3 first six hours of test CMB scans, no filtering, approximate noise weighting and calibration

First light: Compare with WMAP 9 yr

WMAP 9yr T anisotropies as seen in BICEP field

Likelihood forecast for BKP through 2015

Data Included:

- BK150 GHz (through 2013)
- Planck 30 353 GHz
- BK 95 GHz, 220 GHz (through 2015)

Contours are projected likelihood contours centered on different expectation values:

$$r = 0.05, A_d = 3.3 \mu K^2_{CMB}$$
 (BKP ML point)
 $r = 0, A_d = 3.8 \mu K^2_{CMB}$

Both cases here assume synchrotron contribution, β_s =-3.3 and A_{sync} = 3e-4 μK^2_{CMB} (current BKP 95% upper limit).

Foregrounds only PTE = 0.6%

BKP through 2013

Data Included:

- BK150 GHz (through 2013)
- Planck 217 and 353 GHz

Likelihood results from a basic lensed-ΛCDM+r +dust model, fitting the 5 lowest bandpowers of the BB auto- and cross-spectra taken between maps at the above frequencies.

The Maximum likelihood on the grid has:

$$r = 0.05, A_d = 3.3 \mu K^2_{CMB} (BKP ML point)$$

For dust SED use modified blackbody model and marginalize over range β_d =1.59±0.11

We assume no synchrotron contribution here.

Foregrounds only PTE = 8.0%

Lensing the *Polarization* of the CMB

Gravitational Lensing of CMB

Unobservable "true" T, Q, or U

 $B(\hat{n}) \ (\pm 2.5 \mu K)$

SPTpol fields: Deep & Survey

IRAS from Schlegel et al. 1998

Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope

Hanson, et al., 2013 arXiv: 1307.5830

First Lensed B-mode detection

SPTpol 100 deg² B Modes

SPTPol BB Power spectrum

Keisler et al (2015)

Lensing Potential Reconstruction

The estimated lensing potential is a weighted average of a product of T, E, or B modes

Hu & Okamoto 2002

Lensing Convergence Map Reconstruction

All smoothed with ~I deg Gaussian to show only S/N>I modes

Story et al

SPTpol Lensing Power Spectrum

Story et al (2014)

SPTpol fields: Deep & Survey

IRAS from Schlegel et al. 1998

SPT-3G

- Gregorian
- Next gen upgrade, SPT-3G (2017)
- New secondary mirror and receiver
- 2700 multi-color camera pixels

SPT-3G projections

BB-Spectrum

- Expected ~150- σ detection of CMB Lensing
- 20 meV neutrino mass -> 1% shift in lensing spectrum

Projections (w/ Planck priors)

SPT-3G (2019) $\sigma(N_{e\!f\!f}) \qquad \textbf{0.058}$ $\sigma(\Sigma m_{\nu}) \qquad \textbf{0.061 eV*}$

Conclusions

- South Pole one of best site for CMB polarimetry from ground
- Joint analysis of BICEP/Keck+Planck data finds dust at high significance; limit on tensor-to-scalar ratio
- Progress requires multi-frequency observation. Implemented in Keck Array and BICEP3
- SPTpol detects gravitational lensing of CMB BB power, also demonstrated reconstruction of lensing potential with high S/N
- SPTpol 500 sq. deg survey has 3 years of data in pipeline.
- SPT-3G will tighten neutrino parameter space, and will help delens inflationary searches

